Data Science and Machine Learning

1 Methods

1stica

Mathematical and Stat

T 7T
FEaIBETEI

Radislav Vaisman

imre,

Dirk P. Kroese, Zdravko I. Botev, Thomas Ta

22nd August 2024



To my wife and daughters: Lesley, Elise, and Jessica
— DPK

1o Sarah, Sofia, and my parents
— ZIB

To my grandparents: Arno, Harry, Juta, and Maila
—TT

To Valerie
— RV



CONTENTS

Preface

Notation

1 Importing, Summarizing, and Visualizing Data

1.1 Introduction . . . . . . . .. . . ...
1.2 Structuring Features Accordingto Type . . . .. . .. .. ... ... ..
1.3 Summary Tables . . . . . . . .. ... ...
1.4 Summary Statistics . . . . . . . ...
1.5 VisualizingData . . . . . . . .. ... ..
1.5.1 Plotting Qualitative Variables . . . . . .. ... ... .......
1.5.2 Plotting Quantitative Variables . . . . . ... ... ... .. ...
1.5.3 Data Visualization in a Bivariate Setting . . . . . . .. ... ...
Exercises . . . . . . .

2 Statistical Learning

2.1 Introduction . . . . . . . . . . ... e
2.2 Supervised and Unsupervised Learning . . . . . . .. ... ... .....
2.3 Trainingand TestLoss . . . . . ... .. ... ... ... ... .....
2.4 Tradeoffs in Statistical Learning . . . . . . ... ... ... .......
2.5 EBstimatingRisk . . . . . ... L oo L

25.1 In-SampleRisk . . . . ... . ... ... .. o

2.5.2 Cross-Validation . .. ... ... ... ... ... .......
2.6 ModelingData. . . . .. ... ... ...
2.7 Multivariate Normal Models . . . . . . .. ... ... ... .......
2.8 Normal Linear Models . . . . . ... ... ... ... .. ... .....
29 BayesianLearning. . . . . . .. ... ... .. o
Exercises . . . . . . . e

3 Monte Carlo Methods

3.1 Imntroduction . . . . . ... ... ...
3.2 Monte Carlo Sampling . . . .. ... .. ... ... ... ... .....
3.2.1 Generating Random Numbers . . . . . . ... ... .. .....
3.2.2 Simulating Random Variables . . . ... ... ... .......
3.2.3 Simulating Random Vectors and Processes . . . . . . .. ... ..
324 Resampling . . .. .. ... ... ...
3.2.5 MarkovChainMonte Carlo. . . . . ... ... ... .......
3.3 Monte Carlo Estimation . . . . . ... ... ... ... ..........

xiii

xvii

—
NN O O 0O\ W

—

19
20
23
31
35
35
38
40
45
47
48
59



viii

Contents

3.3.1

3.4.1
342
34.3
344
Exercises

Unsupervised Learning
4.1 Introduction
4.2 Risk and Loss in Unsupervised Learning
4.3 Expectation—Maximization (EM) Algorithm
4.4 Empirical Distribution and Density Estimation
4.5 Clustering via Mixture Models
Mixture Models

4.5.2 EM Algorithm for Mixture Models
4.6 Clustering via Vector Quantization

4.5.1

4.6.1

4.6.2 Clustering via Continuous Multiextremal Optimization
4.7 Hierarchical Clustering
4.8 Principal Component Analysis (PCA)
Motivation: Principal Axes of an Ellipsoid
4.8.2 PCA and Singular Value Decomposition (SVD)

4.8.1

Exercises

Regression

5.1 Introduction
5.2 Linear Regression
5.3 Analysis via Linear Models
Parameter Estimation
Model Selection and Prediction
Cross-Validation and Predictive Residual Sum of Squares
In-Sample Risk and Akaike Information Criterion
Categorical Features
Nested Models
Coeflicient of Determination
5.4 Inference for Normal Linear Models
Comparing Two Normal Linear Models

5.4.2 Confidence and Prediction Intervals
5.5 Nonlinear Regression Models
5.6 Linear Models in Python

5.3.1
532
533
534
535
5.3.6
5.3.7

54.1

5.6.1

5.6.2 Analysis
5.6.3 Analysis of Variance (ANOVA)

Crude Monte Carlo
3.3.2  Bootstrap Method
3.3.3  Variance Reduction
3.4 Monte Carlo for Optimization
Simulated Annealing
Cross-Entropy Method
Splitting for Optimization
Noisy Optimization



Contents

5.7

5.6.4 Confidence and Prediction Intervals . . . . ... ... ......
5.6.5 Model Validation . . . . . . . .. .. ... ...
5.6.6 Variable Selection . . . . . . . ... ... ... ...
Generalized Linear Models . . . . . . . . ... ... ... ........

Exercises . . . . . ..

6 Regularization and Kernel Methods

6.1
6.2
6.3
6.4

6.5

8.3

8.4

Introduction . . . . . . . ...
Regularization . . . . . . . . . .. L
Reproducing Kernel Hilbert Spaces . . . . . . .. ... ... .......
Construction of Reproducing Kernels . . . . . . . ... .. .. ... ...
6.4.1 Reproducing Kernels via Feature Mapping . . . . . . .. .. ...
6.4.2 Kernels from Characteristic Functions . . . . . . ... ... ...
6.4.3 Reproducing Kernels Using Orthonormal Features . . . . . . ..
6.4.4 Kernels fromKernels . . . . . ... ... ... ... ... ...
Representer Theorem . . . . . . . .. ... ... ... L.

6.6 Smoothing Cubic Splines . . . . . ... ... ... .. ..........
6.7 Gaussian Process Regression . . . . . ... ... ... ..........
6.8 Kernel PCA . . . . . . . . . . e
Exercises . . . . . ...
7 Classification
7.1 Introduction . . . . . . . . . . ...
7.2 Classification Metrics . . . . . . . . . . . ...
7.3 Classification viaBayes’Rule . . . . ... ... ... ... .. .....
7.4 Linear and Quadratic Discriminant Analysis . . . . . .. ... ... ...
7.5 Logistic Regression and Softmax Classification . . . . . ... ... ...
7.6 K-Nearest Neighbors Classification . . . . . . ... ... ... ......
7.7 Support Vector Machine . . . . . ... ... ... ... ... .. .....
7.8 Classification with Scikit-Learn . . . . . . . . .. .. ... ... .....
Exercises . . . . . . .. e e
8 Decision Trees and Ensemble Methods
8.1 Introduction . . . . . . .. . .. . ...
8.2 Top-Down Construction of Decision Trees . . . . . .. . ... ... ...

8.2.1 Regional Prediction Functions . . . . ... ... ... ......
8.2.2 SplittingRules . . ... ... ... ... ... .. ...
8.2.3 Termination Criterion . . . . . . . . . . .. ... ...
8.2.4 Basic Implementation . . . . . . .. ... ... ...
Additional Considerations . . . . . . . . . ... ... ... ...
8.3.1 Binary Versus Non-Binary Trees . . . . . ... ... .......
8.3.2 DataPreprocessing . . . . . . ... ... ...
8.3.3 Alternative SplittingRules . . . . . .. ... ... ... .....
8.3.4 Categorical Variables . . . . . . ... ... ... .........
83.5 Missing Values . . . .. ... ...
Controlling the Tree Shape . . . . . . ... .. ... ... ... .....
8.4.1 Cost-Complexity Pruning . . . . ... ... ... .........

198
199
200
204
207

215
215
216
222
224
224
225
227
229
230
235
238
242
245

251
251
253
257
259
266
268
269
277
279



Contents

8.5

8.6 Random Forests
8.7
Exercises

8.4.2 Advantages and Limitations of Decision Trees
Bootstrap Aggregation

Boosting . . . .. ... ... ...

Deep Learning

9.1
9.2
9.3
94

9.5

Linear Algebra and Functional Analysis
Vector Spaces, Bases, and Matrices
Inner Product
Complex Vectors and Matrices
Orthogonal Projections
Eigenvalues and Eigenvectors
A.5.1 Left- and Right-Eigenvectors
Matrix Decompositions
A.6.1 (P)LU Decomposition
A.6.2 Woodbury Identity
A.6.3 Cholesky Decomposition
A.6.4 QR Decomposition and the Gram—Schmidt Procedure
A.6.5 Singular Value Decomposition
A.6.6 Solving Structured Matrix Equations
Functional Analysis
Fourier Transforms
A.8.1 Discrete Fourier Transform
A.8.2 Fast Fourier Transform

Al
A2
A3
A4
A5

A.6

A7
A8

Multivariate Differentiation and Optimization
B.1 Multivariate Differentiation
B.1.1 Taylor Expansion
B.1.2 Chain Rule

Optimization Theory
B.2.1 Convexity and Optimization
B.2.2 Lagrangian Method
B.2.3 Duality

B.2

Introduction

Feed-Forward Neural Networks
Back-Propagation
Methods for Training
9.4.1 Steepest Descent
9.4.2 Levenberg—-Marquardt Method
9.4.3 Limited-Memory BFGS Method
9.4.4 Adaptive Gradient Methods
Examples in Python
9.5.1 Simple Polynomial Regression
9.5.2 Image Classification
Exercises



Contents

Xi

B.3 Numerical Root-Finding and Minimization . . . . . . . . .. ... .. ..
B.3.1 Newton-Like Methods . . . . . ... ... ... ... ......
B.3.2 Quasi-NewtonMethods . . . . . . ... ... ... ........
B.3.3 Normal Approximation Method . . . .. ... ... ... ....
B.3.4 Nonlinear Least Squares . . . . . .. .. ... ..........

B.4 Constrained Minimization via Penalty Functions . . . . . . ... ... ..

C Probability and Statistics

C.1 Random Experiments and Probability Spaces . . . . ... .. ... ...
C.2 Random Variables and Probability Distributions . . . . . . . . ... ...
C.3 Expectation . . . . . . . . . . ...
C4 Joint Distributions . . . . . . . . ...
C.5 Conditioning and Independence . . . . . . . ... ... ... .......

C.5.1 Conditional Probability . . . . .. ... ... ... ........

C.S5.2 Independence . . . . . . ... ... ...

C.5.3 Expectation and Covariance . . . . .. .. ... ... ......

C.5.4 Conditional Density and Conditional Expectation . . . . . . . ..
C.6 Functions of Random Variables . . . . . . ... ... ... ........
C.7 Multivariate Normal Distribution . . . . . . ... .. ... ... .....
C.8 Convergence of Random Variables . . . . . .. ... ... ........
C.9 Law of Large Numbers and Central Limit Theorem . . .. ... ... ..
C.10 Markov Chains . . . . . . . . . . . . . e
C.I1 Statistics . . . . . o v o e e e e e e e e
C.I2 Estimation . . . . . . . . ... it e e e

C.12.1 Method of Moments . . . . . ... ... ... ... .......

C.12.2 Maximum Likelihood Method . . . . . .. ... ... ... ...
C.13 Confidence Intervals . . . . . . . . .. .. ... ... .. ... ......
C.14 Hypothesis Testing . . . . . . . . . . . . . .

D Python Primer

D.1 Getting Started . . . . . .. ..
D.2 PythonObjects . . . . . . . . .. . ...
D.3 Typesand Operators . . . . . . . . . . . . v v v vt
D.4 Functions and Methods . . . . . . . ... ... ... L L.
D.5 Modules . . . . . . ..
D.6 Flow Control . . . . . . . . . . . . . . e
D.7 Tteration . . . . . . . . . . ..
D.8 Classes. . . . . . . . o e
D.9 Files . . . . . . . e
D.IONumPy . ... .

D.10.1 Creating and Shaping Arrays . . . . . . . . .. ... ... ....

D.10.2 Slicing . . . . . . . ..

D.10.3 Array Operations . . . . . . . . . . . . it v e

D.10.4 Random Numbers . . . . . . . . ... ... ... ... ......
D.11 Matplotlib . . . . . . . .

D.11.1 CreatingaBasicPlot . . . .. ... ... ... ..........

408
409
411
413
414
415

421
421
422
426
427
428
428
428
429
431
431
434
439
445
451
453
454
455
456
457
458



Xii Contents

D.I2Pandas . . . . . . .. 486
D.12.1 Series and DataFrame . . . . . . . . ... ... ... ....... 486

D.12.2 Manipulating Data Frames . . . . . ... ... ... ....... 487

D.12.3 Extracting Information . . . . . .. ... ... 489

D.12.4 Plotting . . . . . . . . .. 491

D.13 Scikit-learn . . . . . .. ..o 491
D.13.1 Partitioning the Data . . . . . . .. ... ... ... ....... 491

D.13.2 Standardization . . . . . . . ... ... 492

D.13.3 Fitting and Prediction . . . . . . ... ... ... ... ..., 493

D.13.4 Testingthe Model . . . . . . ... ... ... ... ........ 493

D.14 System Calls, URL Access, and Speed-Up . . . . . . .. ... ... ... 494
Bibliography 496

Index 505



PREFACE

In our present world of automation, cloud computing, algorithms, artificial intelligence,
and big data, few topics are as relevant as data science and machine learning. Their recent
popularity lies not only in their applicability to real-life questions, but also in their natural
blending of many different disciplines, including mathematics, statistics, computer science,
engineering, science, and finance.

To someone starting to learn these topics, the multitude of computational techniques
and mathematical ideas may seem overwhelming. Some may be satisfied with only learn-
ing how to use off-the-shelf recipes to apply to practical situations. But what if the assump-
tions of the black-box recipe are violated? Can we still trust the results? How should the
algorithm be adapted? To be able to truly understand data science and machine learning it
is important to appreciate the underlying mathematics and statistics, as well as the resulting
algorithms.

The purpose of this book is to provide an accessible, yet comprehensive, account of
data science and machine learning. It is intended for anyone interested in gaining a better
understanding of the mathematics and statistics that underpin the rich variety of ideas and
machine learning algorithms in data science. Our viewpoint is that computer languages
come and go, but the underlying key ideas and algorithms will remain forever and will
form the basis for future developments.

Before we turn to a description of the topics in this book, we would like to say a
few words about its philosophy. This book resulted from various courses in data science
and machine learning at the Universities of Queensland and New South Wales, Australia.
When we taught these courses, we noticed that students were eager to learn not only how
to apply algorithms but also to understand how these algorithms actually work. However,
many existing textbooks assumed either too much background knowledge (e.g., measure
theory and functional analysis) or too little (everything is a black box), and the information
overload from often disjointed and contradictory internet sources made it more difficult for
students to gradually build up their knowledge and understanding. We therefore wanted to
write a book about data science and machine learning that can be read as a linear story,
with a substantial “backstory” in the appendices. The main narrative starts very simply and
builds up gradually to quite an advanced level. The backstory contains all the necessary

xiii



Xiv

Preface

KEYWORDS

I xvii

background, as well as additional information, from linear algebra and functional analysis
(Appendix A), multivariate differentiation and optimization (Appendix B), and probability
and statistics (Appendix C). Moreover, to make the abstract ideas come alive, we believe
it is important that the reader sees actual implementations of the algorithms, directly trans-
lated from the theory. After some deliberation we have chosen Python as our programming
language. It is freely available and has been adopted as the programming language of
choice for many practitioners in data science and machine learning. It has many useful
packages for data manipulation (often ported from R) and has been designed to be easy to
program. A gentle introduction to Python is given in Appendix D.

To keep the book manageable in size we had to be selective in our choice of topics.
Important ideas and connections between various concepts are highlighted via keywords
and page references (indicated by a =) in the margin. Key definitions and theorems are
highlighted in boxes. Whenever feasible we provide proofs of theorems. Finally, we place
great importance on notation. It is often the case that once a consistent and concise system
of notation is in place, seemingly difficult ideas suddenly become obvious. We use differ-
ent fonts to distinguish between different types of objects. Vectors are denoted by letters in
boldface italics, x, X, and matrices by uppercase letters in boldface roman font, A, K. We
also distinguish between random vectors and their values by using upper and lower case
letters, e.g., X (random vector) and x (its value or outcome). Sets are usually denoted by
calligraphic letters G, H. The symbols for probability and expectation are P and E, respect-
ively. Distributions are indicated by sans serif font, as in Bin and Gamma; exceptions are
the ubiquitous notations N and U for the normal and uniform distributions. A summary of
the most important symbols and abbreviations is given on Pages xvii—xxi.

Data science provides the language and techniques necessary for understanding and
dealing with data. It involves the design, collection, analysis, and interpretation of nu-
merical data, with the aim of extracting patterns and other useful information. Machine
learning, which is closely related to data science, deals with the design of algorithms and
computer resources to learn from data. The organization of the book follows roughly the
typical steps in a data science project: Gathering data to gain information about a research
question; cleaning, summarization, and visualization of the data; modeling and analysis of
the data; translating decisions about the model into decisions and predictions about the re-
search question. As this is a mathematics and statistics oriented book, most emphasis will
be on modeling and analysis.

We start in Chapter 1 with the reading, structuring, summarization, and visualization
of data using the data manipulation package pandas in Python. Although the material
covered in this chapter requires no mathematical knowledge, it forms an obvious starting
point for data science: to better understand the nature of the available data. In Chapter 2, we
introduce the main ingredients of statistical learning. We distinguish between supervised
and unsupervised learning techniques, and discuss how we can assess the predictive per-
formance of (un)supervised learning methods. An important part of statistical learning is
the modeling of data. We introduce various useful models in data science including linear,
multivariate Gaussian, and Bayesian models. Many algorithms in machine learning and
data science make use of Monte Carlo techniques, which is the topic of Chapter 3. Monte
Carlo can be used for simulation, estimation, and optimization. Chapter 4 is concerned
with unsupervised learning, where we discuss techniques such as density estimation, clus-
tering, and principal component analysis. We then turn our attention to supervised learning



v/,

«

B

Preface

XV

in Chapter 5, and explain the ideas behind a broad class of regression models. Therein, we
also describe how Python’s statsmodels package can be used to define and analyze linear
models. Chapter 6 builds upon the previous regression chapter by developing the power-
ful concepts of kernel methods and regularization, which allow the fundamental ideas of
Chapter 5 to be expanded in an elegant way, using the theory of reproducing kernel Hilbert
spaces. In Chapter 7, we proceed with the classification task, which also belongs to the
supervised learning framework, and consider various methods for classification, including
Bayes classification, linear and quadratic discriminant analysis, K-nearest neighbors, and
support vector machines. In Chapter 8 we consider versatile methods for regression and
classification that make use of tree structures. Finally, in Chapter 9, we consider the work-
ings of neural networks and deep learning, and show that these learning algorithms have a
simple mathematical interpretation. An extensive range of exercises is provided at the end
of each chapter.

Python code and data sets for each chapter can be downloaded from the GitHub site:
https://github.com/DSML-book

Acknowledgments

Some of the Python code for Chapters 1 and 5 was adapted from [73]. We thank Benoit
Liquet for making this available, and Lauren Jones for translating the R code into Python.

We thank all who through their comments, feedback, and suggestions have contributed
to this book, including Qibin Duan, Luke Taylor, Rémi Mouzayek, Harry Goodman, Bryce
Stansfield, Ryan Tongs, Dillon Steyl, Bill Rudd, Nan Ye, Christian Hirsch, Chris van der
Heide, Sarat Moka, Aapeli Vuorinen, Joshua Ross, Giang Nguyen, and the anonymous
referees. David Grubbs deserves a special accollade for his professionalism and attention
to detail in his role as Editor for this book.

The book was test-run during the 2019 Summer School of the Australian Mathemat-
ical Sciences Institute. More than 80 bright upper-undergraduate (Honours) students used
the book for the course Mathematical Methods for Machine Learning, taught by Zdravko
Botev. We are grateful for the valuable feedback that they provided.

Our special thanks go out to Robert Salomone, Liam Berry, Robin Carrick, and Sam
Daley, who commented in great detail on earlier versions of the entire book and wrote and
improved our Python code. Their enthusiasm, perceptiveness, and kind assistance have
been invaluable.

Of course, none of this work would have been possible without the loving support,
patience, and encouragement from our families, and we thank them with all our hearts.

This book was financially supported by the Australian Research Council Centre of
Excellence for Mathematical & Statistical Frontiers, under grant number CE140100049.

Dirk Kroese, Zdravko Botev,
Thomas Taimre, and Radislav Vaisman
Brisbane and Sydney


https://github.com/DSML-book

XVi




NOTATION

We could, of course, use any notation we want, do not laugh at notations;
invent them, they are powerful. In fact, mathematics is, to a large extent, in-
vention of better notations.

Richard P. Feynman

We have tried to use a notation system that is, in order of importance, simple, descript-
ive, consistent, and compatible with historical choices. Achieving all of these goals all of
the time would be impossible, but we hope that our notation helps to quickly recognize
the type or “flavor” of certain mathematical objects (vectors, matrices, random vectors,
probability measures, etc.) and clarify intricate ideas.

We make use of various typographical aids, and it will be beneficial for the reader to
be aware of some of these.

e Boldface font is used to indicate composite objects, such as column vectors x =
[x1,...,x,]" and matrices X = [x;;]. Note also the difference between the upright bold
font for matrices and the slanted bold font for vectors.

e Random variables are generally specified with upper case roman letters X, ¥, Z and their
outcomes with lower case letters x,y,z. Random vectors are thus denoted in upper case
slanted bold font: X = [X;,..., X,]".

e Sets of vectors are generally written in calligraphic font, such as X, but the set of real
numbers uses the common blackboard bold font R. Expectation and probability also use
the latter font.

e Probability distributions use a sans serif font, such as Bin and Gamma. Exceptions to
this rule are the “standard” notations N and U for the normal and uniform distributions.

e We often omit brackets when it is clear what the argument is of a function or operator.
For example, we prefer EX? to E[X?].

Xvil



XViii

Notation

e We employ color to emphasize that certain words refer to a , function, or
package in Python. All code is written in typewriter font. To be compatible with past
notation choices, we introduced a special blue symbol X for the model (design) matrix of
a linear model.

e Important notation such as 7, g, g* is often defined in a mnemonic way, such as 7 for
“training”, g for “guess”, g* for the “star” (that is, optimal) guess, and ¢ for “loss”.

e We will occasionally use a Bayesian notation convention in which the same symbol is
used to denote different (conditional) probability densities. In particular, instead of writing
fx(x) and fx y(x|y) for the probability density function (pdf) of X and the conditional pdf
of X given Y, we simply write f(x) and f(x|y). This particular style of notation can be of
great descriptive value, despite its apparent ambiguity.

General font/notation rules

scalar
vector
random vector

matrix

S M o H o=

set

)

estimate or approximation

optimal

=l =% =

average

Common mathematical symbols

v for all

| there exists

oc is proportional to

1 is perpendicular to

~ is distributed as

iic}, ~iid are independent and identically distributed as
o is approximately distributed as

Vf gradient of f

V2f Hessian of f

fecr f has continuous derivatives of order p
~ is approximately

~ is asymptotically

< i1s much smaller than

@ direct sum



Notation

XiX

Cc D 0O

elementwise product
intersection

union

is defined as

converges almost surely to
converges in distribution to

converges in probability to

converges in L,-norm to
Euclidean norm

smallest integer larger than x
largest integer smaller than x

max{x, 0}

Matrix/vector notation

AT xT
A-!
A+
A-T
A>0
A>0
dim(x)
det(A)
A
tr(A)

transpose of matrix A or vector x

inverse of matrix A

pseudo-inverse of matrix A

inverse of matrix AT or transpose of A~

matrix A is positive definite

matrix A is positive semidefinite

dimension of vector x

determinant of matrix A

absolute value of the determinant of matrix A

trace of matrix A

Reserved letters and words

C
d
E
€
f
8

1{A}or 1,

—

set of complex numbers
differential symbol
expectation

the number 2.71828...

probability density (discrete or continuous)

prediction function
indicator function of set A
the square root of —1

risk: expected loss



XX

Notation

Loss loss function

In (natural) logarithm

N set of natural numbers {0, 1,...}

(0] big-O order symbol: f(x) = O(g(x)) if | f(x)| < ag(x) for some constant « as

X —a
little-o order symbol: f(x) = o(g(x)) if f(x)/g(x) = 0asx — a

probability measure
the number 3.14159. ..

set of real numbers (one-dimensional Euclidean space)

R S

A

n-dimensional Euclidean space

=
+

positive real line: [0, 0o)
deterministic training set
random training set

model (design) matrix

N oy A

set of integers {...,—1,0,1,...}

Probability distributions

Ber Bernoulli
Beta beta

Bin binomial
Exp exponential
Geom geometric

Gamma  gamma

F Fisher—Snedecor F
N normal or Gaussian
Pareto Pareto

Poi Poisson

t Student’s ¢

u uniform

Abbreviations and acronyms

cdf cumulative distribution function
CMC crude Monte Carlo

CE Cross-entropy

EM expectation—maximization

GP Gaussian process

KDE Kernel density estimate/estimator



Notation

XXi

KL
KKT
iid
MAP
MCMC
MLE
OOB
PCA
pdf
SVD

Kullback—-Leibler

Karush—Kuhn—Tucker

independent and identically distributed

maximum a posteriori

Markov chain Monte Carlo

maximum likelihood estimator/estimate

out-of-bag

principal component analysis

probability density function (discrete or continuous)

singular value decomposition



XXii




CHAPTER 1

IMPORTING, SUMMARIZING, AND
VISUALIZING DATA

This chapter describes where to find useful data sets, how to load them into Python,
and how to (re)structure the data. We also discuss various ways in which the data can
be summarized via tables and figures. Which type of plots and numerical summaries
are appropriate depends on the type of the variable(s) in play. Readers unfamiliar with
Python are advised to read Appendix D first.

1.1 Introduction

Data comes in many shapes and forms, but can generally be thought of as being the result
of some random experiment — an experiment whose outcome cannot be determined in
advance, but whose workings are still subject to analysis. Data from a random experiment
are often stored in a table or spreadsheet. A statistical convention is to denote variables —
often called features — as columns and the individual items (or units) as rows. It is useful
to think of three types of columns in such a spreadsheet:

1. The first column is usually an identifier or index column, where each unit/row is
given a unique name or ID.

2. Certain columns (features) can correspond to the design of the experiment, specify-
ing, for example, to which experimental group the unit belongs. Often the entries in
these columns are deterministic; that is, they stay the same if the experiment were to
be repeated.

3. Other columns represent the observed measurements of the experiment. Usually,
these measurements exhibit variability; that is, they would change if the experiment
were to be repeated.

There are many data sets available from the Internet and in software packages. A well-
known repository of data sets is the Machine Learning Repository maintained by the Uni-
versity of California at Irvine (UCI), found at https://archive.ics.uci.edu/.

1

FEATURES


https://archive.ics.uci.edu/

Introduction

1= 486

These data sets are typically stored in a CSV (comma separated values) format, which
can be easily read into Python. For example, to access the data set from this web-
site with Python, download the file to your working directory, import the pandas package
via

import pandas as pd

and read in the data as follows:

abalone = pd.read_csv('abalone.data',header = None)

It is important to add header = None, as this lets Python know that the first line of the
CSV does not contain the names of the features, as it assumes so by default. The data set
was originally used to predict the age of abalone from physical measurements, such as
shell weight and diameter.

Another useful repository of over 1000 data sets from various packages in the R pro-
gramming language, collected by Vincent Arel-Bundock, can be found at:

https://vincentarelbundock.github.io/Rdatasets/datasets.html.

For example, to read Fisher’s famous data set from R’s datasets package into Py-
thon, type:

urlprefix = 'https://vincentarelbundock.github.io/Rdatasets/csv/'
dataname = 'datasets/iris.csv'
iris = pd.read_csv(urlprefix + dataname)

The data set contains four physical measurements (sepal/petal length/width) on
50 specimens (each) of 3 species of iris: setosa, versicolor, and virginica. Note that in this
case the headers are included. The output of read_csv is a DataFrame object, which is
pandas’s implementation of a spreadsheet; see Section D.12.1. The DataFrame method
head gives the first few rows of the DataFrame, including the feature names. The number
of rows can be passed as an argument and is 5 by default. For the DataFrame, we
have:

iris.head ()

Unnamed: ® Sepal.Length Petal.Width Species
0 1 5.1 0.2 setosa
1 2 4.9 0.2 setosa
2 3 4.7 0.2 setosa
3 4 4.6 0.2 setosa
4 5 5.0 0.2 setosa

[5 rows x 6 columns]

The names of the features can be obtained via the columns attribute of the DataFrame
object, asin iris.columns. Note that the first column is a duplicate index column, whose
name (assigned by pandas) is 'Unnamed: 0'. We can drop this column and reassign the
iris object as follows:


https://vincentarelbundock.github.io/Rdatasets/datasets.html

Importing, Summarizing, and Visualizing Data 3
iris = iris.drop('Unnamed: 0',1)
The data for each feature (corresponding to its specific name) can be accessed by using
Python’s slicing notation []. For example, the object iris[’Sepal.Length’] contains
the 150 sepal lengths.
The first three rows of the data set from the UCI repository can be found as
follows:
abalone.head(3)
0 1 2 3 4 5 6 7 8
0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 @0.150 15
1 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 7
2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9
Here, the missing headers have been assigned according to the order of the natural
numbers. The names should correspond to Sex, Length, Diameter, Height, Whole weight,
Shucked weight, Viscera weight, Shell weight, and Rings, as described in the file with the
name abalone.names on the UCI website. We can manually add the names of the features
to the DataFrame by reassigning the columns attribute, as in:
abalone.columns = ['Sex', 'Length', 'Diameter', 'Height',
'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight',
'Rings ']
1.2 Structuring Features According to Type
We can generally classify features as either quantitative or qualitative. Quantitative features QUANTITATIVE
possess “numerical quantity”, such as height, age, number of births, etc., and can either be
continuous or discrete. Continuous quantitative features take values in a continuous range
of possible values, such as height, voltage, or crop yield; such features capture the idea
that measurements can always be made more precisely. Discrete quantitative features have
a countable number of possibilities, such as a count.
In contrast, qualitative features do not have a numerical meaning, but their possible QUALITATIVE

values can be divided into a fixed number of categories, such as {M,F} for gender or {blue,
black, brown, green} for eye color. For this reason such features are also called categorical.
A simple rule of thumb is: if it does not make sense to average the data, it is categorical.
For example, it does not make sense to average eye colors. Of course it is still possible to
represent categorical data with numbers, such as 1 = blue, 2 = black, 3 = brown, but such
numbers carry no quantitative meaning. Categorical features are often called factors.

When manipulating, summarizing, and displaying data, it is important to correctly spe-
cify the type of the variables (features). We illustrate this using the nutrition_elderly
data set from [73], which contains the results of a study involving nutritional measure-
ments of thirteen features (columns) for 226 elderly individuals (rows). The data set can be
obtained from:

http://www.biostatisticien.eu/springeR/nutrition_elderly.xls.

CATEGORICAL

FACTORS


http://www.biostatisticien.eu/springeR/nutrition_elderly.xls

Structuring Features According to Type

Excel files can be read directly into pandas via the read_excel method:

x1ls = 'http://www.biostatisticien.eu/springeR/nutrition_elderly.xls'
nutri = pd.read_excel(xls)

This creates a DataFrame object . The first three rows are as follows:

pd.set_option('display.max_columns', 8) # to fit display
nutri.head(3)

gender situation tea ... cooked_fruit_veg chocol fat
0 2 1 o ... 4 5 6
1 2 1 1 ... 5 1 4
2 2 1 o ... 2 5 4

[3 rows x 13 columns]

You can check the type (or structure) of the variables via the info method of

nutri.info(Q)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 226 entries, ® to 225
Data columns (total 13 columns):

gender 226 non-null int64
situation 226 non-null int64
tea 226 non-null int64
coffee 226 non-null int64
height 226 non-null int64
weight 226 non-null int64
age 226 non-null int64
meat 226 non-null int64
fish 226 non-null int64
raw_fruit 226 non-null int64
cooked_fruit_veg 226 non-null int64
chocol 226 non-null int64
fat 226 non-null int64

dtypes: int64(13)
memory usage: 23.0 KB

All 13 features in are (at the moment) interpreted by Python as quantitative
variables, indeed as integers, simply because they have been entered as whole numbers.
The meaning of these numbers becomes clear when we consider the description of the
features, given in Table 1.2. Table 1.1 shows how the variable types should be classified.

Table 1.1: The feature types for the data frame

Qualitative gender, situation, fat

meat, fish, raw_fruit, cooked_fruit_veg, chocol
Discrete quantitative tea, coffee
Continuous quantitative | height, weight, age




Importing, Summarizing, and Visualizing Data

Table 1.2: Description of the variables in the nutritional study [73].

Feature Description Unit or Coding

gender Gender 1=Male; 2=Female
1=Single

situation Family status 2=Living with spouse

3=Living with family
4=Living with someone else

tea Daily consumption of tea Number of cups
coffee Daily consumption of coffee Number of cups
height Height cm
weight Weight (actually: mass) kg
age Age at date of interview Years

0=Never

1=Less than once a week
2=0nce a week

meat Consumption of meat 3223 times a week
4=4-6 times a week
5=Every day
fish Consumption of fish As inmeat
raw_fruit Consumption of raw fruits As inmeat
cooked_fruit_veg Copsumpuon of cooked As inmeat
fruits and vegetables
chocol Consumption of chocolate As inmeat
1=Butter
2=Margarine
3=Peanut oil
fat Type of fat used 4=Sunflower oil
for cooking 5=Olive oil
6=Mix of vegetable oils (e.g., Isio4)
7=Colza oil

8=Duck or goose fat

Note that the categories of the qualitative features in the second row of Table 1.1, meat,
..., chocol have a natural order. Such qualitative features are sometimes called ordinal, in
contrast to qualitative features without order, which are called nominal. We will not make
such a distinction in this book.

We can modify the Python value and type for each categorical feature, using the
replace and astype methods. For categorical features, such as gender, we can replace
the value 1 with 'Male' and 2 with 'Female', and change the type to 'category' as
follows.

DICT = {1:'Male', 2:'Female'} # dictionary specifies replacement
nutri['gender'] = nutri['gender'].replace(DICT).astype('category')

The structure of the other categorical-type features can be changed in a similar way.
Continuous features such as height should have type float:

nutri['height'] = nutri['height'].astype(float)




Summary Tables

We can repeat this for the other variables (see Exercise 2) and save this modified data

frame as a CSV file, by using the pandas method to_csv.

nutri.to_csv('nutri.csv',index=False)

1.3 Summary Tables

It is often useful to summarize a large spreadsheet of data in a more condensed form. A
table of counts or a table of frequencies makes it easier to gain insight into the underlying
distribution of a variable, especially if the data are qualitative. Such tables can be obtained
with the methods describe and value_counts.

As a first example, we load the DataFrame, which we restructured and saved
(see previous section) as 'nutri.csv', and then construct a summary for the feature
(column) 'fat'.

nutri = pd.read_csv('nutri.csv')
nutri['fat'].describe()

count 226
unique 8
top sunflower
freq 68

Name: fat, dtype: object

We see that there are 8 different types of fat used and that sunflower has the highest
count, with 68 out of 226 individuals using this type of cooking fat. The method
value_counts gives the counts for the different fat types.

nutri['fat'].value_counts()

sunflower 68
peanut 48
olive 40
margarine 27
Isio4 23
butter 15
duck 4
colza 1

Name: fat, dtype: int64

(Column labels are also attributes of a DataFrame, and nutri. fat, for example, is
exactly the same object as nutri['fat']. )




Importing, Summarizing, and Visualizing Data

It is also possible to use crosstab to cross tabulate between two or more variables,
giving a contingency table:

pd.crosstab(nutri.gender, nutri.situation)

situation Couple Family Single
gender

Female 56 7 78
Male 63 2 20

We see, for example, that the proportion of single men is substantially smaller than the
proportion of single women in the data set of elderly people. To add row and column totals
to a table, use margins=True.

pd.crosstab(nutri.gender, nutri.situation, margins=True)
situation Couple Family Single All

gender

Female 56 7 78 141

Male 63 2 20 85

All 119 9 98 226

1.4 Summary Statistics

In the following, x = [xi,...,x,]" is a column vector of n numbers. For our data,

the vector x could, for example, correspond to the heights of the n = 226 individuals.

The sample mean of x, denoted by Xx, is simply the average of the data values:

1 n
E:—in.
n £

i=1

Using the mean method in Python for the data, we have, for instance:

nutri[ 'height'].mean()

163.96017699115043

The p-sample quantile (0 < p < 1) of x is a value x such that at least a fraction p of the
data is less than or equal to x and at least a fraction 1 — p of the data is greater than or equal
to x. The sample median is the sample 0.5-quantile. The p-sample quantile is also called
the 100 X p percentile. The 25, 50, and 75 sample percentiles are called the first, second,
and third quartiles of the data. For the data they are obtained as follows.

nutri[ 'height'].quantile(g=[0.25,0.5,0.75])

0.25 157.0
0.50 163.0
0.75 170.0

CROSS TABULATE

SAMPLE MEAN

SAMPLE QUANTILE

SAMPLE MEDIAN

QUARTILES



Visualizing Data

SAMPLE RANGE

SAMPLE VARIANCE

SAMPLE
STANDARD
DEVIATION

I 455

The sample mean and median give information about the location of the data, while the
distance between sample quantiles (say the 0.1 and 0.9 quantiles) gives some indication of
the dispersion (spread) of the data. Other measures for dispersion are the sample range,
max;x; — min;x;, the sample variance

1 n
2 _ =2
= ; (= %)%, (L.1)
and the sample standard deviation s = Vs?. For the data, the range (in cm) is:

nutri['height'].max() - nutri['height'].min()

48.0

The variance (in cm?) is:

round (nutri['height'].var(), 2) # round to two decimal places

81.06

And the standard deviation can be found via:

round(nutri[ 'height'].std(), 2)

9.0

We already encountered the describe method in the previous section for summarizing
qualitative features, via the most frequent count and the number of unique elements. When
applied to a quantitative feature, it returns instead the minimum, maximum, mean, and the
three quartiles. For example, the 'height' feature in the data has the following
summary statistics.

nutri[ 'height'].describe ()
count 226.000000

mean 163.960177

std 9.003368

min 140.000000

25\% 157.000000

50\% 163.000000

75\% 170.000000

max 188.000000

Name: height, dtype: float64

1.5 Visualizing Data

In this section we describe various methods for visualizing data. The main point we would
like to make is that the way in which variables are visualized should always be adapted to
the variable types; for example, qualitative data should be plotted differently from quantit-
ative data.



Importing, Summarizing, and Visualizing Data

/

For the rest of this section, it is assumed that matplotlib.pyplot, pandas, and
numpy, have been imported in the Python code as follows.

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

/

1.5.1 Plotting Qualitative Variables

Suppose we wish to display graphically how many elderly people are living by themselves,
as a couple, with family, or other. Recall that the data are given in the situation column
of our data. Assuming that we already restructured the data, as in Section 1.2, we
can make a barplot of the number of people in each category via the plt.bar function of
the standard matplotlib plotting library. The inputs are the x-axis positions, heights, and
widths of each bar respectively.

width = 0.35 # the width of the bars

x = [0, 0.8, 1.6] # the bar positions on x-axis
situation_counts=nutri['situation'].value_counts()
plt.bar(x, situation_counts, width, edgecolor = 'black')
plt.xticks(x, situation_counts.index)

plt.show()

125
100 A
75 A
50 A
25 A

o .
Couple Single Family

Figure 1.1: Barplot for the qualitative variable 'situation'.

1.5.2 Plotting Quantitative Variables

We now present a few useful methods for visualizing quantitative data, again using the

data set. We will first focus on continuous features (e.g., 'age ') and then add some
specific graphs related to discrete features (e.g., 'tea'). The aim is to describe the variab-
ility present in a single feature. This typically involves a central tendency, where observa-
tions tend to gather around, with fewer observations further away. The main aspects of the
distribution are the location (or center) of the variability, the spread of the variability (how
far the values extend from the center), and the shape of the variability; e.g., whether or not
values are spread symmetrically on either side of the center.

= 3

BARPLOT



10

Visualizing Data

BOXPLOT

HISTOGRAM

1.5.2.1 Boxplot

A boxplot can be viewed as a graphical representation of the five-number summary of
the data consisting of the minimum, maximum, and the first, second, and third quartiles.
Figure 1.2 gives a boxplot for the 'age' feature of the data.

plt.boxplot(nutri['age'],widths=width,vert=False)
plt.xlabel('age')
plt.show ()

The widths parameter determines the width of the boxplot, which is by default plotted
vertically. Setting vert=False plots the boxplot horizontally, as in Figure 1.2.

1{ b—— o

65 70 75 80 85 90
age

Figure 1.2: Boxplot for 'age'.

The box is drawn from the first quartile (Q;) to the third quartile (Q3). The vertical line
inside the box signifies the location of the median. So-called “whiskers” extend to either
side of the box. The size of the box is called the interquartile range: IQR = Q3 — Q;. The
left whisker extends to the largest of (a) the minimum of the data and (b) Q; — 1.5IQR.
Similarly, the right whisker extends to the smallest of (a) the maximum of the data and
(b) O3 + 1.51QR. Any data point outside the whiskers is indicated by a small hollow dot,
indicating a suspicious or deviant point (outlier). Note that a boxplot may also be used for
discrete quantitative features.

1.5.2.2 Histogram

A histogram is a common graphical representation of the distribution of a quantitative
feature. We start by breaking the range of the values into a number of bins or classes.
We tally the counts of the values falling in each bin and then make the plot by drawing
rectangles whose bases are the bin intervals and whose heights are the counts. In Python
we can use the function plt.hist. For example, Figure 1.3 shows a histogram of the 226
ages in , constructed via the following Python code.

weights = np.ones_like(nutri.age)/nutri.age.count()

plt.hist(nutri.age,bins=9,weights=weights, facecolor="'cyan',
edgecolor="black', linewidth=1)

plt.xlabel('age')

plt.ylabel ('Proportion of Total')

plt.show ()




Importing, Summarizing, and Visualizing Data 11
Here 9 bins were used. Rather than using raw counts (the default), the vertical axis
here gives the percentage in each class, defined by S2tt. This is achieved by choosing the
“weights” parameter to be equal to the vector with entries 1/266, with length 226. Various
plotting parameters have also been changed.
0.20 A
£0.151
o
|_
Y—
o
S 0.10 1
]
[oX
o
a 0.05 1
0-00 T T T T T
65 70 75 80 85 90
age
Figure 1.3: Histogram of 'age".
Histograms can also be used for discrete features, although it may be necessary to
explicitly specify the bins and placement of the ticks on the axes.
1.5.2.3 Empirical Cumulative Distribution Function
The empirical cumulative distribution function, denoted by F,, is a step function which EMPIRICAL
jumps an amount k/n at observation values, where k is the number of tied observations CUMULATIVE
at that value. For observations xi, . .., x,, F,(x) is the fraction of observations less than or D o
equal to x, i.e.,
numberof x; < x 1 ©
Fo(x) = == == ) xn <, (1.2)
n n 4
i=1
where 1 denotes the indicator function; that is, 1 {x; < x} is equal to 1 when x; < x and 0 INDICATOR

otherwise. To produce a plot of the empirical cumulative distribution function we can use
the plt.step function. The result for the age data is shown in Figure 1.4. The empirical
cumulative distribution function for a discrete quantitative variable is obtained in the same
way.

X = np.sort(nutri.age)

y = np.linspace(®,1,len(nutri.age))
plt.xlabel('age')

plt.ylabel ('Fn(x)"')

plt.step(x,y)
plt.xlim(x.min(),x.max())
plt.show ()




12

Visualizing Data

1.0

0.8

0.6

Fn(x)

0.4

0.2

0.0

65 70 75 80 85 90
age

Figure 1.4: Plot of the empirical distribution function for the continuous quantitative fea-
ture 'age’.

1.5.3 Data Visualization in a Bivariate Setting

In this section, we present a few useful visual aids to explore relationships between two
features. The graphical representation will depend on the type of the two features.

1.5.3.1 Two-way Plots for Two Categorical Variables

Comparing barplots for two categorical variables involves introducing subplots to the fig-
ure. Figure 1.5 visualizes the contingency table of Section 1.3, which cross-tabulates the
family status (situation) with the gender of the elderly people. It simply shows two barplots
next to each other in the same figure.

80 A
3 Male
[ Female
60 A
0
€
3 401
O
20 A
O T
Couple Family Single

Figure 1.5: Barplot for two categorical variables.



Importing, Summarizing, and Visualizing Data

13

The figure was made using the seaborn package, which was specifically designed to
simplify statistical visualization tasks.

import seaborn as sns
sns.countplot(x="situation', hue = 'gender', data=nutri,
hue_order = ['Male', 'Female'], palette = ['SkyBlue', "Pink'],
saturation = 1, edgecolor="'black")
plt.legend(loc="upper center')

plt
plt

.xlabel('")
.ylabel ('Counts')
plt.

show ()

1.5.3.2 Plots for Two Quantitative Variables

We can visualize patterns between two quantitative features using a scatterplot. This can be
done with plt.scatter. The following code produces a scatterplot of 'weight' against

'height' for the

data.

plt
plt

plt.
.xlabel('height")
.ylabel ('weight ')
plt.

scatter (nutri.height,

show ()

nutri.weight,

s=12,

marker=

lol)

40 - .

140 150 160 170 180 190
height

Figure 1.6: Scatterplot of 'weight' against 'height'.

The next Python code illustrates that it is possible to produce highly sophisticated scat-
ter plots, such as in Figure 1.7. The figure shows the birth weights (mass) of babies whose
mothers smoked (blue triangles) or not (red circles). In addition, straight lines were fitted to
the two groups, suggesting that birth weight decreases with age when the mother smokes,
but increases when the mother does not smoke! The question is whether these trends are
statistically significant or due to chance. We will revisit this data set later on in the book.

SCATTERPLOT

== 200



14

Visualizing Data

urlprefix = 'https://vincentarelbundock.github.io/Rdatasets/csv/'
dataname = 'MASS/birthwt.csv'
bwt = pd.read_csv(urlprefix + dataname)
bwt = bwt.drop('Unnamed: 0',1) #drop unnamed column
styles = {0: ['o','red"'], 1: ['A",'blue']}
for k in styles:
grp = bwt[bwt.smoke==k]
m,b = np.polyfit(grp.age, grp.bwt, 1) # fit a straight line
plt.scatter(grp.age, grp.bwt, c=styles[k][1], s=15, linewidth=0,
marker = styles[k][0])
plt.plot(grp.age, m*grp.age + b, '-', color=styles[k][1])

plt.xlabel('age')

plt.ylabel('birth weight (g)"')

plt.legend([ 'non-smokers', 'smokers'],prop={'size':8},
loc=(0.5,0.8))

plt.show ()

6000

— non-smokers
5000 — smokers °

4000

T

3000

T

2000

birth weight (g)

1000

10 15 20 25 30 35 40 45 50
age

Figure 1.7: Birth weight against age for smoking and non-smoking mothers.

1.5.3.3 Plots for One Qualitative and One Quantitative Variable

In this setting, it is interesting to draw boxplots of the quantitative feature for each level
of the categorical feature. Assuming the variables are structured correctly, the function
plt.boxplot can be used to produce Figure 1.8, using the following code:

males = nutri[nutri.gender == 'Male']

females = nutri[nutri.gender == 'Female']

plt.boxplot([males.coffee, females.coffee],notch=True,widths
=(0.5,0.5))

plt.xlabel ('gender"')
plt.ylabel('coffee')
plt.xticks([1,2],[ 'Male', 'Female'])

plt.show ()




Importing, Summarizing, and Visualizing Data

15

1- >

Male Female
gender

Figure 1.8: Boxplots of a quantitative feature 'coffee' as a function of the levels of a
categorical feature 'gender'. Note that we used a different, “notched”, style boxplot this
time.

Further Reading

The focus in this book is on the mathematical and statistical analysis of data, and for the
rest of the book we assume that the data is available in a suitable form for analysis. How-
ever, a large part of practical data science involves the cleaning of data; that is, putting
it into a form that is amenable to analysis with standard software packages. Standard Py-
thon modules such as numpy and pandas can be used to reformat rows, rename columns,
remove faulty outliers, merge rows, and so on. McKinney, the creator of pandas, gives
many practical case studies in [84]. Effective data visualization techniques are beautifully
illustrated in [65].

Exercises

Before you attempt these exercises, make sure you have up-to-date versions of the relevant
Python packages, specifically matplotlib, pandas, and seaborn. An easy way to ensure
this is to update packages via the Anaconda Navigator, as explained in Appendix D.

1. Visit the UCI Repository https://archive.ics.uci.edu/. Read the description of
the data and download the Mushroom data set agaricus-lepiota.data. Using pandas,
read the data into a DataFrame called mushroom, via read_csv.

(a) How many features are in this data set?
(b) What are the initial names and types of the features?

(c) Rename the first feature (index 0) to 'edibility' and the sixth feature (index 5) to
'odor' [Hint: the column names in pandas are immutable; so individual columns
cannot be modified directly. However it is possible to assign the entire column names
list via mushroom.columns = newcols. |


https://archive.ics.uci.edu/

16 Exercises
(d) The 6th column lists the various odors of the mushrooms: encoded as 'a', 'c', ....
Replace these with the names 'almond', 'creosote’, etc. (categories correspond-
ing to each letter can be found on the website). Also replace the 'edibility' cat-
egories 'e' and 'p' with 'edible' and 'poisonous’.
(e) Make a contingency table cross-tabulating 'edibility' and 'odor"'.
(f) Which mushroom odors should be avoided, when gathering mushrooms for consump-
tion?
(g) What proportion of odorless mushroom samples were safe to eat?
2. Change the type and value of variables in the data set according to Table 1.2 and
save the data as a CSV file. The modified data should have eight categorical features, three
floats, and two integer features.
3. It frequently happens that a table with data needs to be restructured before the data can
be analyzed using standard statistical software. As an example, consider the test scores in
Table 1.3 of 5 students before and after specialized tuition.
Table 1.3: Student scores.
Student Before After
1 75 85
2 30 50
3 100 100
4 50 52
5 60 65
This is not in the standard format described in Section 1.1. In particular, the student scores
are divided over two columns, whereas the standard format requires that they are collected
in one column, e.g., labelled 'Score'. Reformat (by hand) the table in standard format,
using three features:
e 'Score', taking continuous values,
e 'Time', taking values 'Before' and 'After’,
e 'Student', taking values from 1 to 5.
Useful methods for reshaping tables in pandas are melt, stack, and unstack.
4. Create a similar barplot as in Figure 1.5, but now plot the corresponding proportions of
males and females in each of the three situation categories. That is, the heights of the bars
should sum up to 1 for both barplots with the same ’gender’ value. [Hint: seaborn does
not have this functionality built in, instead you need to first create a contingency table and
use matplotlib.pyplot to produce the figure.]
S 5. The data set, mentioned in Section 1.1, contains various features, including

'Petal.Length' and 'Sepal.Length’', of three species of iris: setosa, versicolor, and
virginica.



Importing, Summarizing, and Visualizing Data

17

(a) Load the data set into a pandas DataFrame object.

(b) Using matplotlib.pyplot, produce boxplots of 'Petal.Length' for each the
three species, in one figure.

(c) Make a histogram with 20 bins for 'Petal.Length’.

(d) Produce a similar scatterplot for 'Sepal.Length' against 'Petal.Length’ to that
of the left plot in Figure 1.9. Note that the points should be colored according to the
’Species’ feature as per the legend in the right plot of the figure.

(e) Using the kdeplot method of the seaborn package, reproduce the right plot of
Figure 1.9, where kernel density plots for 'Petal.Length' are given.

8 A i
° cho 2.5 — setosa
o —— versicolor
- ° Sed 2.0 1 —— virginica
® @0
£ 0o G
g $ g 2 1.5
o} %8 © 21
| 6 | 8 @ c
KPR :
1.0 1
3 . b
] (<]
5 ° ge ® 0.5 -
]
)
0.0 T T T T

Petal.Length Petal.Length

Figure 1.9: Left: scatterplot of 'Sepal.Length' against 'Petal.Length'. Right: kernel
density estimates of 'Petal.Length' for the three species of iris.

6. Import the data set from the same website as the data set above.
The data set contains the daily closing prices of four European stock indices during the
1990s, for 260 working days per year.

(a) Create a vector of times (working days) for the stock prices, between 1991.496 and
1998.646 with increments of 1/260.

(b) Reproduce Figure 1.10. [Hint: Use a dictionary to map column names (stock indices)
to colors.]

= 131



18

Exercises

9000
8000 A
7000 -
6000 A
5000 A
4000 A
3000 A
2000 A
1000 -

0 T T ‘ T T T T
1991 1992 1993 1994 1995 1996 1997 1998 1999

Figure 1.10: Closing stock indices for various European stock markets.

7. Consider the KASANDR data set from the UCI Machine Learning Repository, which can
be downloaded from

https://archive.ics.uci.edu/ml/machine-learning-databases/00385/de
.tar.bz2.

This archive file has a size of 900Mb, so it may take a while to download. Uncompressing
the file (e.g., via 7-Zip) yields a directory de containing two large CSV files: test_de.csv
and train_de. csv, with sizes 372Mb and 3Gb, respectively. Such large data files can still
be processed efficiently in pandas, provided there is enough memory. The files contain
records of user information from Kelkoo web logs in Germany as well as meta-data on
users, offers, and merchants. The data sets have 7 attributes and 1919561 and 15844717
rows, respectively. The data sets are anonymized via hex strings.

(a) Load train_de.csv into a pandas DataFrame object de, using
read_csv('train_de.csv',.delimiter..=."\t"').

If not enough memory is available, load test_de.csv instead. Note that entries are
separated here by tabs, not commas. Time how long it takes for the file to load, using
the time package. (It took 38 seconds for train_de.csv to load on one of our
computers.)

(b) How many unique users and merchants are in this data set?

8. Visualizing data involving more than two features requires careful design, which is often
more of an art than a science.

(a) Go to Vincent Arel-Bundocks’s website (URL given in Section 1.1) and read the
Orange data set into a pandas DataFrame object called . Remove its first
(unnamed) column.

(b) The data set contains the circumferences of 5 orange trees at various stages in their
development. Find the names of the features.

(c) In Python, import seaborn and visualize the growth curves (circumference against
age) of the trees, using the regplot and FacetGrid methods.


https://archive.ics.uci.edu/ml/machine-learning-databases/00385/de.tar.bz2
https://archive.ics.uci.edu/ml/machine-learning-databases/00385/de.tar.bz2

CHAPTER 2

STATISTICAL LEARNING

The purpose of this chapter is to introduce the reader to some common concepts
and themes in statistical learning. We discuss the difference between supervised and
unsupervised learning, and how we can assess the predictive performance of supervised
learning. We also examine the central role that the linear and Gaussian properties play
in the modeling of data. We conclude with a section on Bayesian learning. The required
probability and statistics background is given in Appendix C.

2.1 Introduction

Although structuring and visualizing data are important aspects of data science, the main
challenge lies in the mathematical analysis of the data. When the goal is to interpret the
model and quantify the uncertainty in the data, this analysis is usually referred to as stat-
istical learning. In contrast, when the emphasis is on making predictions using large-scale
data, then it is common to speak about machine learning or data mining.

There are two major goals for modeling data: 1) to accurately predict some future
quantity of interest, given some observed data, and 2) to discover unusual or interesting
patterns in the data. To achieve these goals, one must rely on knowledge from three im-
portant pillars of the mathematical sciences.

Function approximation. Building a mathematical model for data usually means under-
standing how one data variable depends on another data variable. The most natural
way to represent the relationship between variables is via a mathematical function or
map. We usually assume that this mathematical function is not completely known,
but can be approximated well given enough computing power and data. Thus, data
scientists have to understand how best to approximate and represent functions using
the least amount of computer processing and memory.

Optimization. Given a class of mathematical models, we wish to find the best possible
model in that class. This requires some kind of efficient search or optimization pro-
cedure. The optimization step can be viewed as a process of fitting or calibrating
a function to observed data. This step usually requires knowledge of optimization
algorithms and efficient computer coding or programming.

19

STATISTICAL
LEARNING

MACHINE
LEARNING

DATA MINING



20

Supervised and Unsupervised Learning

FEATURE

RESPONSE

PREDICTION
FUNCTION

REGRESSION

CLASSIFICATION

LOSS FUNCTION

A

RISK

Probability and Statistics. In general, the data used to fit the model is viewed as a realiz-
ation of a random process or numerical vector, whose probability law determines the
accuracy with which we can predict future observations. Thus, in order to quantify
the uncertainty inherent in making predictions about the future, and the sources of er-
ror in the model, data scientists need a firm grasp of probability theory and statistical
inference.

2.2 Supervised and Unsupervised Learning

Given an input or feature vector x, one of the main goals of machine learning is to predict
an output or response variable y. For example, x could be a digitized signature and y a
binary variable that indicates whether the signature is genuine or false. Another example is
where x represents the weight and smoking habits of an expecting mother and y the birth
weight of the baby. The data science attempt at this prediction is encoded in a mathematical
function g, called the prediction function, which takes as an input x and outputs a guess g(x)
for y (denoted by y, for example). In a sense, g encompasses all the information about the
relationship between the variables x and y, excluding the effects of chance and randomness
in nature.

In regression problems, the response variable y can take any real value. In contrast,
when y can only lie in a finite set, say y € {0, ...,c — 1}, then predicting y is conceptually
the same as classifying the input x into one of ¢ categories, and so prediction becomes a
classification problem.

We can measure the accuracy of a prediction y with respect to a given response y by
using some loss function Loss(y,y). In a regression setting the usual choice is the squared-
error loss (y—7y)2. In the case of classification, the zero—one (also written 0—1) loss function
Loss(y,y) = 1{y # 7} is often used, which incurs a loss of 1 whenever the predicted class
y is not equal to the class y. Later on in this book, we will encounter various other useful
loss functions, such as the cross-entropy and hinge loss functions (see, e.g., Chapter 7).

[

The word error is often used as a measure of distance between a “true” object y and
some approximation y thereof. If y is real-valued, the absolute error |y —y] and the
squared error (y—7y)? are both well-established error concepts, as are the norm ||y ]|
and squared norm ||y —y||* for vectors. The squared error (y —y)? is just one example
of a loss function. .

It is unlikely that any mathematical function g will be able to make accurate predictions
for all possible pairs (x,y) one may encounter in Nature. One reason for this is that, even
with the same input x, the output y may be different, depending on chance circumstances
or randomness. For this reason, we adopt a probabilistic approach and assume that each
pair (x,y) is the outcome of a random pair (X, Y) that has some joint probability density
f(x,y). We then assess the predictive performance via the expected loss, usually called the
risk, for g:

{(g) = ELoss(Y, g(X)). (2.1)

For example, in the classification case with zero—one loss function the risk is equal to the



Statistical Learning

21

probability of incorrect classification: £(g) = P[Y # g(X)]. In this context, the prediction
function g is called a classifier. Given the distribution of (X, Y) and any loss function, we
can in principle find the best possible g* := argmin, E Loss(Y, g(X)) that yields the smallest
risk €* := €(g*). We will see in Chapter 7 that in the classification case with y € {0,...,c—1}
and €(g) = P[Y # g(X)], we have

g'(x) = argmax f(y|x),
Ye(O,.c—1)
where f(y|x) = P[Y = y|X = x] is the conditional probability of ¥ = y given X = x.
As already mentioned, for regression the most widely-used loss function is the squared-
error loss. In this setting, the optimal prediction function g* is often called the regression
function. The following theorem specifies its exact form.

Theorem 2.1: Optimal Prediction Function for Squared-Error Loss

For the squared-error loss Loss(y,y) = (y —)?, the optimal prediction function g* is
equal to the conditional expectation of Y given X = x:

g'(x) =E[Y|X =x].

Proof: Let g*(x) = E[Y | X = x]. For any function g, the squared-error risk satisfies

E(Y - g(X))* = E[(Y - '(X) + g'(X) — g(X))*]
= E(Y - ¢"(X))* + 2E[(Y ~ g"(X))(g"(X) — g(X))] + E(g"(X) — g(X))
> E(Y - ¢"(X))* + 2E[(Y - g"(X))(g"(X) — g(X))]
= E(Y - ¢"(X))* + 2E{(g"(X) — g(X)E[Y — g"(X)| X]} .

In the last equation we used the tower property. By the definition of the conditional expect-
ation, we have E[Y — g*(X) | X] = 0. It follows that E(Y — g(X))?> > E(Y — g*(X))?, showing
that g* yields the smallest squared-error risk. O

One consequence of Theorem 2.1 is that, conditional on X = x, the (random) response
Y can be written as
Y = g"(x) + &(x), (2.2)

where £(x) can be viewed as the random deviation of the response from its conditional
mean at x. This random deviation satisfies E e(x) = 0. Further, the conditional variance of
the response Y at x can be written as Var &(x) = v*(x) for some unknown positive function
v. Note that, in general, the probability distribution of &(x) is unspecified.

Since, the optimal prediction function g* depends on the typically unknown joint distri-
bution of (X, Y), it is not available in practice. Instead, all that we have available is a finite
number of (usually) independent realizations from the joint density f(x,y). We denote this
sample by 7 = {(X1, Y1),...,(X,, Y,)} and call it the training set (7~ is a mnemonic for
training) with n examples. It will be important to distinguish between a random training
set 7 and its (deterministic) outcome {(xy,y;), ..., (X, y,)}. We will use the notation 7 for
the latter. We will also add the subscript # in 7, when we wish to emphasize the size of the
training set.

CLASSIFIER

5 251

REGRESSION
FUNCTION

15 431

TRAINING SET



22

Supervised and Unsupervised Learning

LEARNER

SUPERVISED
LEARNING

EXPLANATORY
VARIABLES

UNSUPERVISED
LEARNING

= 121

= 167
= 251

Our goal is thus to “learn” the unknown g* using the n examples in the training set 7 .
Let us denote by g4 the best (by some criterion) approximation for g* that we can construct
from 7. Note that g+ is a random function. A particular outcome is denoted by g.. It is
often useful to think of a teacher—learner metaphor, whereby the function g+ is a learner
who learns the unknown functional relationship g* : x + y from the training data 7. We
can imagine a “teacher” who provides n examples of the true relationship between the
output Y; and the input X; for i = 1,...,n, and thus “trains” the learner g+ to predict the
output of a new input X, for which the correct output Y is not provided by the teacher (is
unknown).

The above setting is called supervised learning, because one tries to learn the functional
relationship between the feature vector x and response y in the presence of a teacher who
provides n examples. It is common to speak of “explaining” or predicting y on the basis of
x, where x is a vector of explanatory variables.

An example of supervised learning is email spam detection. The goal is to train the
learner g+ to accurately predict whether any future email, as represented by the feature
vector x, is spam or not. The training data consists of the feature vectors of a number
of different email examples as well as the corresponding labels (spam or not spam). For
instance, a feature vector could consist of the number of times sales-pitch words like “free”,
“sale”, or “miss out” occur within a given email.

As seen from the above discussion, most questions of interest in supervised learning
can be answered if we know the conditional pdf f(y|x), because we can then in principle
work out the function value g*(x).

In contrast, unsupervised learning makes no distinction between response and explan-
atory variables, and the objective is simply to learn the structure of the unknown distribu-
tion of the data. In other words, we need to learn f(x). In this case the guess g(x) is an
approximation of f(x) and the risk is of the form

(g) = ELoss(f(X), g(X)).

An example of unsupervised learning is when we wish to analyze the purchasing be-
haviors of the customers of a grocery shop that has a total of, say, a hundred items on sale.
A feature vector here could be a binary vector x € {0, 1}'® representing the items bought
by a customer on a visit to the shop (a 1 in the k-th position if a customer bought item
k € {1,...,100} and a O otherwise). Based on a training set 7 = {xy,..., x,}, we wish to
find any interesting or unusual purchasing patterns. In general, it is difficult to know if an
unsupervised learner is doing a good job, because there is no teacher to provide examples
of accurate predictions.

The main methodologies for unsupervised learning include clustering, principal com-
ponent analysis, and kernel density estimation, which will be discussed in Chapter 4.

In the next three sections we will focus on supervised learning. The main super-
vised learning methodologies are regression and classification, to be discussed in detail in
Chapters 5 and 7. More advanced supervised learning techniques, including reproducing
kernel Hilbert spaces, tree methods, and deep learning, will be discussed in Chapters 6, 8,
and 9.



Statistical Learning

23

2.3 Training and Test Loss

Given an arbitrary prediction function g, it is typically not possible to compute its risk €(g)
in (2.1). However, using the training sample 7, we can approximate £(g) via the empirical
(sample average) risk

1 n
tr(g) = ~ > Loss(¥,, g(X), (2.3)
i=1

which we call the training loss. The training loss is thus an unbiased estimator of the risk
(the expected loss) for a prediction function g, based on the training data.

To approximate the optimal prediction function g* (the minimizer of the risk £(g)) we
first select a suitable collection of approximating functions G and then take our learner to
be the function in G that minimizes the training loss; that is,

9 = argmin £7-(g). (2.4)
8€G

For example, the simplest and most useful G is the set of /inear functions of x; that is, the
set of all functions g : x — B'x for some real-valued vector .

We suppress the superscript G when it is clear which function class is used. Note that
minimizing the training loss over all possible functions g (rather than over all g € &) does
not lead to a meaningful optimization problem, as any function g for which g(X;) = Y; for
all i gives minimal training loss. In particular, for a squared-error loss, the training loss will
be 0. Unfortunately, such functions have a poor ability to predict new (that is, independent
from 77) pairs of data. This poor generalization performance is called overfitting.

By choosing g a function that predicts the training data exactly (and is, for example,
0 otherwise), the squared-error training loss is zero. Minimizing the training loss is
not the ultimate goal!

The prediction accuracy of new pairs of data is measured by the generalization risk of
the learner. For a fixed training set 7 it is defined as

£(g9) = ELoss(Y, g2(X)), (2.5)

where (X, Y) is distributed according to f(x,y). In the discrete case the generalization risk
is therefore: f(gf ) = XxyLoss(y, gf (x))f(x,y) (replace the sum with an integral for the
continuous case). The situation is illustrated in Figure 2.1, where the distribution of (X, Y)
is indicated by the red dots. The training set (points in the shaded regions) determines a
fixed prediction function shown as a straight line. Three possible outcomes of (X, Y) are
shown (black dots). The amount of loss for each point is shown as the length of the dashed
lines. The generalization risk is the average loss over all possible pairs (x, y), weighted by
the corresponding f(x,y).

TRAINING LOSS

OVERFITTING

GENERALIZATION
RISK



24 Training and Test Loss
[ X X J
Y| Y
Figure 2.1: The generalization risk for a fixed training set is the weighted-average loss over
all possible pairs (x, y).
For a random training set 7, the generalization risk is thus a random variable that
depends on 7 (and G). If we average the generalization risk over all possible instances of
EXPECTED 7, we obtain the expected generalization risk:
GENERALIZATION
RISK

TEST SAMPLE

TEST LOSS

E l(g7) = ELoss(Y, g7 (X)), (2.6)

where (X, Y) in the expectation above is independent of 7. In the discrete case, we have

ELES) = Yoryryny, LOSS, 87 (X)) £, ) f(X1,31) -+ f(X,, ya). Figure 2.2 gives an il-
lustration.

el - W
- ':.'.:.6.- . v pe O
...; -...:-. ecee —*__“_'. .._.2 '-...:-.
4_._"/4..——'/""'“— Yy viv 7@
y o .' :.' Y y : .
7% T | 73

Figure 2.2: The expected generalization risk is the weighted-average loss over all possible
pairs (x,y) and over all training sets.

For any outcome 7 of the training data, we can estimate the generalization risk without
bias by taking the sample average

1
br(89) = — ) Loss(¥]. g2(X)). 2.7)
i=1

where {(X],Y]),...,(X,,Y,)} =1 T is a so-called test sample. The test sample is com-
pletely separate from 7, but is drawn in the same way as 7 ; that is, via independent draws
from f(x,y), for some sample size n’. We call the estimator (2.7) the test loss. For a ran-
dom training set 7~ we can define €¢,(g,gf) similarly. It is then crucial to assume that 7 is
independent of 7. Table 2.1 summarizes the main definitions and notation for supervised

learning.



Statistical Learning

25

Table 2.1: Summary of definitions for supervised learning.

~ 2 e M

f(x,y)
SOlx)

TOrT,

T or7,

y

8
Loss(y,y)
{(g)

g

gQ

t-(g)

tr(g)
Forg,

8? or gy

Fixed explanatory (feature) vector.

Random explanatory (feature) vector.

Fixed (real-valued) response.

Random response.

Joint pdf of X and Y, evaluated at (x, y).

Conditional pdf of Y given X = x, evaluated at y.

Fixed training data {(x;,y;),i = 1,...,n}.

Random training data {(X;,Y;),i = 1,...,n}.

Matrix of explanatory variables, with n rows x/,i = 1,...,n
and dim(x) feature columns; one of the features may be the
constant 1.

Vector of response variables (yq,...,y,)".

Prediction (guess) function.

Loss incurred when predicting response y withy.

Risk for prediction function g; that is, E Loss(Y, g(X)).
Optimal prediction function; that is, argmin, £(g).

Optimal prediction function in function class G; that is,
argmin, .. €(g).

Training loss for prediction function g; that is, the sample av-
erage estimate of £(g) based on a fixed training sample 7.

The same as ¢.(g), but now for a random training sample 7 .
The learner: argmin, g €-(g). That is, the optimal prediction
function based on a fixed training set T and function class G.
We suppress the superscript G if the function class is implicit.
The learner, where we have replaced T with a random training
set7 .

To compare the predictive performance of various learners in the function class G, as
measured by the test loss, we can use the same fixed training set 7 and test set 7’ for all
learners. When there is an abundance of data, the “overall” data set is usually (randomly)
divided into a training and test set, as depicted in Figure 2.3. We then use the training data
., and use the test data to select the best (with the
smallest test loss) among these learners. In this context the test set is called the validation
set. Once the best learner has been chosen, a third “test” set can be used to assess the
predictive performance of the best learner. The training, validation, and test sets can again
be obtained from the overall data set via a random allocation. When the overall data set
is of modest size, it is customary to perform the validation phase (model selection) on the

to construct various learners g%', g2, ..

training set only, using cross-validation. This is the topic of Section 2.5.2.

VALIDATION SET

= 38



26

Training and Test Loss

POLYNOMIAL
REGRESSION
MODEL

Response Explanatory Response  Explanatory
Trainin
Training aining
Validation

Test I Test

Figure 2.3: Statistical learning algorithms often require the data to be divided into training
and test data. If the latter is used for model selection, a third set is needed for testing the
performance of the selected model.

We next consider a concrete example that illustrates the concepts introduced so far.

B Example 2.1 (Polynomial Regression) In what follows, it will appear that we have ar-
bitrarily replaced the symbols x, g, G with u, h, H, respectively. The reason for this switch
of notation will become clear at the end of the example.

The data (depicted as dots) in Figure 2.4 are n = 100 points (u;,y;),i = 1,...,n drawn
from iid random points (U;, Y;),i = 1,...,n, where the {U;} are uniformly distributed on
the interval (0, 1) and, given U; = u;, the random variable Y; has a normal distribution with
expectation 10 — 140u; + 400u; — 250u? and variance ¢* = 25. This is an example of a
polynomial regression model. Using a squared-error loss, the optimal prediction function
h*(u) = E[Y | U = u] is thus

h*(u) = 10 — 140u + 400u® — 250u°,

which is depicted by the dashed curve in Figure 2.4.

401 e data points °
= = true ° .
L
30 - o ®
o® =, ® o @
pe ? oo o°
20 - o o7, ¢ ° o
S ° e’ @ e
= 10 1 o og Po o°
= A 2.
S 9 o
LIRS ® ® o’e o
01 @ @ Qe o0 o o
L ] _— " * ‘
° ® o
[ ]
—-10 .. ° )
[ ]
0.0 0.2 0.4 0.6 0.8 1.0
u

Figure 2.4: Training data and the optimal polynomial prediction function A*.



v/,

«

B

Statistical Learning

27

To obtain a good estimate of ~*(«) based on the training set 7 = {(u;,y;),i = 1,...,n},
we minimize the outcome of the training loss (2.3):

1 n
L) =~ > = b)) (2.8)
i=1

over a suitable set H of candidate functions. Let us take the set ), of polynomial functions
in u of order p — 1:

h(u) := By + Pou + Bau® + - -+ + Bul™! (2.9)

for p = 1,2, ... and parameter vector 8 = 81,5, ...,[8,]". This function class contains the
best possible 4*(u) = E[Y | U = u] for p > 4. Note that optimization over H), is a parametric
optimization problem, in that we need to find the best 8. Optimization of (2.8) over H,, is
not straightforward, unless we notice that (2.9) is a linear function in . In particular, if we
map each feature u to a feature vector x = [1, u, u?, ..., uP™'7, then the right-hand side of
(2.9) can be written as the function

g(x) =x"p,

which is linear in x (as well as B). The optimal 4*(«) in H, for p > 4 then corresponds
to the function g*(x) = x"f" in the set G, of linear functions from R” to R, where §* =
[10, —140,400, -250,0, ...,0]". Thus, instead of working with the set 4, of polynomial
functions we may prefer to work with the set G, of linear functions. This brings us to a
very important idea in statistical learning:

Let us now reformulate the learning problem in terms of the new explanatory (feature)
variables x; = [1,u;, uf, R uf_l]T, i I,...,n. It will be convenient to arrange these

feature vectors into a matrix X with rows x/,...,x,:

( Expand the feature space to obtain a linear prediction function.

p-1
l/tl |
.

u,

2
1w u

2
I uy u;

(2.10)

-1
2 LLoyP

Collecting the responses {y;} into a column vector y, the training loss (2.3) can now be
written compactly as

1

ley - XBII*. (2.11)

To find the optimal learner (2.4) in the class G, we need to find the minimizer of (2.11):

B = argmin [ly - XBIP", (2.12)
B
which is called the ordinary least-squares solution. As is illustrated in Figure 2.5, to find E,

we choose XE to be equal to the orthogonal projection of y onto the linear space spanned
by the columns of the matrix X; that is, X8 = Py, where P is the projection matrix.

ORDINARY
LEAST-SQUARES

PROJECTION
MATRIX



28

Training and Test Loss

I 362

=" 360

PSEUDO-INVERSE

= 356

NORMAL
EQUATIONS

Span(X)

Figure 2.5: XE is the orthogonal projection of y onto the linear space spanned by the
columns of the matrix X.

According to Theorem A.4, the projection matrix is given by
P=XX", (2.13)

where the p X n matrix X" in (2.13) is the pseudo-inverse of X. If X happens to be of full
column rank (so that none of the columns can be expressed as a linear combination of the
other columns), then X* = (X"X)~'XT. _
In any case, from X8 = Py and PX = X, we can see that B satisfies the normal
equations:
X'XB=X"Py=PX)'y=X"y. (2.14)
This is a set of linear equations, which can be solved very fast and whose solution can be
written explicitly as: _
B =X"y. (2.15)

Figure 2.6 shows the trained learners for various values of p:

W) = g8 (x) = x"B

e data points
40 == = true e
p = 2, underfit

30 A p =4, correct o
—— p=16, overfit P
—~ 20 1 f
=
Ze
< 10
0 |
_10 |
0.0 0.2 0.4 0.6 0.8 1.0
u

Figure 2.6: Training data with fitted curves for p = 2,4, and 16. The true cubic polynomial
curve for p = 4 is also plotted (dashed line).



Statistical Learning

29

We see that for p = 16 the fitted curve lies closer to the data points, but is further away
from the dashed true polynomial curve, indicating that we overfit. The choice p = 4 (the
true cubic polynomial) is much better than p = 16, or indeed p = 2 (straight line).

Each function class G, gives a different learner gf”, p = 1,2,.... To assess which is
better, we should not simply take the one that gives the smallest training loss. We can
always get a zero training loss by taking p = n, because for any set of n points there exists
a polynomial of degree n — 1 that interpolates all points!

Instead, we assess the predictive performance of the learners using the test loss (2.7),
computed from a test data set. If we collect all n’ test feature vectors in a matrix X’ and
the corresponding test responses in a vector y’, then, similar to (2.11), the test loss can be
written compactly as

1 /7 IA
(g2 = — Iy’ = X'BIF,

whereﬁ is given by (2.15), using the training data.

Figure 2.7 shows a plot of the test loss against the number of parameters in the vector
B; that is, p. The graph has a characteristic “bath-tub” shape and is at its lowest for p = 4,
correctly identifying the polynomial order 3 for the true model. Note that the test loss, as
an estimate for the generalization risk (2.7), becomes numerically unreliable after p = 16
(the graph goes down, where it should go up). The reader may check that the graph for
the training loss exhibits a similar numerical instability for large p, and in fact fails to
numerically decrease to 0 for large p, contrary to what it should do in theory. The numerical
problems arise from the fact that for large p the columns of the (Vandermonde) matrix X
are of vastly different magnitudes and so floating point errors quickly become very large.

Finally, observe that the lower bound for the test loss is here around 21, which corres-
ponds to an estimate of the minimal (squared-error) risk £* = 25.

160

140

120

100 A

80

Test loss

60

40 1

20 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of parameters p

Figure 2.7: Test loss as function of the number of parameters p of the model.

This script shows how the training data were generated and plotted in Python:



30

Training and Test Loss

polyregl.py

import numpy as np

from numpy.random import

from numpy.linalg import

import matplotlib.pyplot

def generate_data(beta ,
u = np.random.rand(n,
y = (u ** np.arange (0,
return u, y

np.random.seed (12)

n = 100
sig = 5

XX = np.arange(np.min(u),

plt.xlabel(r'$u$’')
plt.ylabel(r'$hA*(u)$")
plt.legend(['data points'
plt.show ()

beta = np.array([[10, -140, 400, -250]]1).T

u, y = generate_data(beta

yy = np.polyval(np.flip(beta), xx)
plt.plot(u, y, '.', markersize=8)
plt.plot(xx, yy, '--',linewidth=3)

rand , randn
norm , solve

as plt
sig, n):
D

4)) @ beta + sig * np.random.randn(n, 1)

, sig, n)
np.max(u)+5e-3, 5e-3)

, 'true'])

The following code, which imports the code above, fits polynomial models with p =
I,...,K = 18 parameters to the training data and plots a selection of fitted curves, as

shown in Figure 2.6.

polyreg2.py

*

from polyregl import
max_p = 18
X = np.ones((n, 1))

betahat, trainloss = {},

if p > 1:
X = np.hstack ((X,

p = [2, 4, 16] # select

# add the three curves
for i in p:

p_range = np.arange(l, max_p + 1, 1)

for p in p_range: # p is the number of parameters

betahat[p] = solve(X.
trainloss[p] = (norm(y - X @ betahat[p])**2/n)

#replot the points and true line and store in the list "plots"
plots = [plt.plotCu, y, 'k.', markersize=8)[0],
plt.plot(xx, vyy,

yy = np.polyval(np.flip(betahat[i]), xx)
plots.append(plt.plot(xx, yy)[0])

{}

u**(p-1))) # add column to matrix

Te@ZX, X.T @ y)

three curves

'k--",linewidth=3) [0]]



https://github.com/DSML-book/Programs/blob/master/Chapter2/polyreg1.py
https://github.com/DSML-book/Programs/blob/master/Chapter2/polyreg2.py

Statistical Learning 31

plt.xlabel(r'$u$"')

plt.ylabel(r'$hA{\mathcal{H} p}_{\tau}(u)s$')

plt.legend(plots,('data points', 'true',k '$p=2%, underfit',
'$p=4%, correct', '$p=16%, overfit'))

plt.savefig('polyfitpy.pdf', format="pdf')

plt.show ()

The last code snippet which imports the previous code, generates the test data and plots the
graph of the test loss, as shown in Figure 2.7.

polyreg3.py

from polyreg2 import *

# generate test data
u_test, y_test = generate_data(beta, sig, n)

MSE = []
X_test = np.ones((n, 1))

for p in p_range:
if p > 1:
X_test = np.hstack((X_test, u_test**(p-1)))

y_hat = X_test @ betahat[p] # predictions
MSE.append(np.sum((y_test - y_hat)**2/n))

plt.plot(p_range, MSE, 'b', p_range, MSE, 'bo')
plt.xticks(ticks=p_range)

plt.xlabel ('Number of parameters $p$')
plt.ylabel('Test loss')

2.4 Tradeoffs in Statistical Learning

The art of machine learning in the supervised case is to make the generalization risk (2.5)
or expected generalization risk (2.6) as small as possible, while using as few computational
resources as possible. In pursuing this goal, a suitable class G of prediction functions has
to be chosen. This choice is driven by various factors, such as

e the complexity of the class (e.g., is it rich enough to adequately approximate, or even
contain, the optimal prediction function g*?),

e the ease of training the learner via the optimization program (2.4),
e how accurately the training loss (2.3) estimates the risk (2.1) within class G,

e the feature types (categorical, continuous, etc.).


https://github.com/DSML-book/Programs/blob/master/Chapter2/polyreg3.py

32

Tradeoffs in Statistical Learning

IRREDUCIBLE RISK

APPROXIMATION
ERROR

STATISTICAL

(ESTIMATION)
ERROR

=" 439

APPROXIMATION—
ESTIMATION
TRADEOFF

As a result, the choice of a suitable function class G usually involves a tradeoff between
conflicting factors. For example, a learner from a simple class G can be trained very
quickly, but may not approximate g* very well, whereas a learner from a rich class G
that contains g* may require a lot of computing resources to train.

To better understand the relation between model complexity, computational simplicity,
and estimation accuracy, it is useful to decompose the generalization risk into several parts,
so that the tradeoffs between these parts can be studied. We will consider two such decom-
positions: the approximation—estimation tradeoft and the bias—variance tradeoff.

We can decompose the generalization risk (2.5) into the following three components:

W= __ + g9- +eg%-g9, (2.16)

irreducible risk approximation error statistical error

where ¢* := £(g*) is the irreducible risk and g% := argmin, ¢ €(g) is the best learner within
class G. No learner can predict a new response with a smaller risk than ¢*.

The second component is the approximation error; it measures the difference between
the irreducible risk and the best possible risk that can be obtained by selecting the best
prediction function in the selected class of functions G. Determining a suitable class G and
minimizing £(g) over this class is purely a problem of numerical and functional analysis,
as the training data 7 are not present. For a fixed G that does not contain the optimal g*, the
approximation error cannot be made arbitrarily small and may be the dominant component
in the generalization risk. The only way to reduce the approximation error is by expanding
the class G to include a larger set of possible functions.

The third component is the statistical (estimation) error. It depends on the training

set T and, in particular, on how well the learner g% estimates the best possible prediction
function, g, within class G. For any sensible estimator this error should decay to zero (in
probability or expectation) as the training size tends to infinity.

The approximation—estimation tradeoff pits two competing demands against each
other. The first is that the class G has to be simple enough so that the statistical error is
not too large. The second is that the class G has to be rich enough to ensure a small approx-
imation error. Thus, there is a tradeoff between the approximation and estimation errors.

For the special case of the squared-error loss, the generalization risk is equal to £(g9) =
E(Y - g? (X))?; that is, the expected squared error! between the predicted value g? X)
and the response Y. Recall that in this case the optimal prediction function is given by
g"(x) = E[Y | X = x]. The decomposition (2.16) can now be interpreted as follows.

1. The first component, £* = E(Y — g*(X))?, is the irreducible error, as no prediction
function will yield a smaller expected squared error.

2. The second component, the approximation error £(g9) — £(g*), is equal to E(g8(X) —
g"(X))>. We leave the proof (which is similar to that of Theorem 2.1) as an exercise;
see Exercise 2. Thus, the approximation error (defined as a risk difference) can here
be interpreted as the expected squared error between the optimal predicted value and
the optimal predicted value within the class G.

3. For the third component, the statistical error, f(gf ) — £(g%) there is no direct inter-
pretation as an expected squared error unless G is the class of linear functions; that

!Colloquially called mean squared error.



Statistical Learning

33

is, g(x) = x'B for some vector B. In this case we can write (see Exercise 3) the
statistical error as €(g9) — €(g9) = E(g9(X) - g9(X))>.

Thus, when using a squared-error loss, the generalization risk for a linear class G can
be decomposed as:

(g% =EB(g%(X) - Y)* = " + E(g9(X) - ' (X))* +E(g9(X) - g9(X))*. (2.17)

approximation error statistical error

Note that in this decomposition the statistical error is the only term that depends on the
training set.

B Example 2.2 (Polynomial Regression (cont.)) We continue Example 2.1. Here G =
G, is the class of linear functions of x = [1,u,u?,...,u""']", and g*(x) = x"B*. Condi-
tional on X = x we have that Y = g*(x) + &(x), with &(x) ~ N(0, £*), where {* = E(Y —
g"(X))* = 25 is the irreducible error. We wish to understand how the approximation and
statistical errors behave as we change the complexity parameter p.

First, we consider the approximation error. Any function g € G, can be written as

g(x)=h(u) = +pou+--- +ﬁpup_1 =[1,u,... ,l/lp_l]ﬁ,

and so g(X) is distributed as [1,U,..., UP"'|B, where U ~ U(0,1). Similarly, g*(X) is
distributed as [1, U, U?, U]B". It follows that an expression for the approximation error

. 1 +\2 ... . .
1s: fo ([1, u,...,uP 1B —[1,u,u*,u’l B ) du. To minimize this error, we set the gradient
with respect to 8 to zero and obtain the p linear equations

(w1 B = [Lu,u?, 1?1 B7) du = 0,
fol ([l,u, o uP B =1, u,u?,u’ ]ﬁ*) udu =0,

fol ([l,u, LuP B —11,u, uz,u3]/3*) uP~'du = 0.

Let
1
Hp:f[l,u,...,u”_l]T[l,u,...,u”_l]du
0

be the p X p Hilbert matrix, which has (i, j)-th entry given by f utldu=1/G+ j-1).
Then, the above system of linear equations can be written as H, = Hﬁ where H is the
p X 4 upper left sub-block of H; and p = max{p, 4}. The solution, which we denote by g,
is:

65

, p

[—— 517, P
5

[-3,10,25]7, p

[10,-140, 400, -250,0,...,0]", p

-

-

B,= (2.18)

A\
B Lo =

15 397

HiiBERT MATRIX



34

Tradeoffs in Statistical Learning

2
Hence, the approximation error E (ggﬂ X)-gX )) is given by

32225 —
25~ 1279, P = 1,

| N | a0s8 p=2,
fo([l,u,...,uf’—l]ﬁ,,—[1,u,u2,u3lﬁ) dit =1 o3 ;

28 ~ 223, p = 3,

0, p =>4

(2.19)

Notice how the approximation error becomes smaller as p increases. In this particular
example the approximation error is in fact zero for p > 4. In general, as the class of ap-
proximating functions G becomes more complex, the approximation error goes down.

Next, we illustrate the typical behavior of the statistical error. Since g.(x) = x'f3, the
statistical error can be written as

1 —_ —_ —_
[ (1B B,) @ = BB, H,B - B, (2.20)

Figure 2.8 illustrates the decomposition (2.17) of the generalization risk for the same train-
ing set that was used to compute the test loss in Figure 2.7. Recall that test loss gives an
estimate of the generalization risk, using independent test data. Comparing the two figures,
we see that in this case the two match closely. The global minimum of the statistical error is
approximately 0.28, with minimizer p = 4. Since the approximation error is monotonically
decreasing to zero, p = 4 is also the global minimizer of the generalization risk.

150 @ gpproximation error
—-o---statistical error
irreducible error
100 —e—generalization risk

50

0 2 4 6 8 10 12 14 16 18
Number of parameters p

Figure 2.8: The generalization risk for a particular training set is the sum of the irreducible
error, the approximation error, and the statistical error. The approximation error decreases
to zero as p increases, whereas the statistical error has a tendency to increase after p = 4.

Note that the statistical error depends on the estimate ,E, which in its turn depends on
the training set 7. We can obtain a better understanding of the statistical error by consid-
ering its expected behavior; that is, averaged over many training sets. This is explored in
Exercise 11. [ |

Using again a squared-error loss, a second decomposition (for general G) starts from

€& =t + (g% - U(g"),



Statistical Learning

35

where the statistical error and approximation error are combined. Using similar reasoning
as in the proof of Theorem 2.1, we have

(%) = B(g¥(X) ~ ¥ = £ + E(g8(X) — '(X)) = £ + ED (X, 1),

where D(x,7) := g? (x) — g"(x). Now consider the random variable D(x,7") for a random
training set 7. The expectation of its square is:

G N 2 2
E (5(x) - ¢°(x)) = ED*(x,7) = (ED(x,7))” + Var D(x, )

= (B¢ (x) - g"(x))*+ Vargd(x) . (2.21)
~—
pointwise squared bias pointwise variance

If we view the learner gf.(x) as a function of a random training set, then the pointwise
squared bias term is a measure for how close gg(x) is on average to the true g*(x),
whereas the pointwise variance term measures the deviation of gg(x) from its expected
value ng.(x). The squared bias can be reduced by making the class of functions G more
complex. However, decreasing the bias by increasing the complexity often leads to an in-
crease in the variance term. We are thus seeking learners that provide an optimal balance
between the bias and variance, as expressed via a minimal generalization risk. This is called
the bias—variance tradeoff.

Note that the expected generalization risk (2.6) can be written as £* +ED*(X, 7)), where
X and 7 are independent. It therefore decomposes as

El(g]) = ¢ +E(Blgg(X)| X] - ¢"(X))* +E[Var[gZ (X)| X]]. (2.22)

expected squared bias expected variance

2.5 Estimating Risk

The most straightforward way to quantify the generalization risk (2.5) is to estimate it via
the test loss (2.7). However, the generalization risk depends inherently on the training set,
and so different training sets may yield significantly different estimates. Moreover, when
there is a limited amount of data available, reserving a substantial proportion of the data
for testing rather than training may be uneconomical. In this section we consider different
methods for estimating risk measures which aim to circumvent these difficulties.

2.5.1 In-Sample Risk

We mentioned that, due to the phenomenon of overfitting, the training loss of the learner,
{:(g;) (for simplicity, here we omit G from gf ), is not a good estimate of the generalization
risk £(g.) of the learner. One reason for this is that we use the same data for both training
the model and assessing its risk. How should we then estimate the generalization risk or
expected generalization risk?

To simplify the analysis, suppose that we wish to estimate the average accuracy of the
predictions of the learner g, at the n feature vectors x, ..., x,, (these are part of the training

POINTWISE
SQUARED BIAS

POINTWISE
VARIANCE

BIAS—VARIANCE
TRADEOFF



36

Estimating Risk

IN-SAMPLE RISK

EXPECTED
OPTIMISM

set 7). In other words, we wish to estimate the in-sample risk of the learner g:

1 n
ln(ge) = — ) ELoss(Y], g:(x), (2.23)
i=1

where each response Y is drawn from f(y|x;), independently. Even in this simplified set-
ting, the training loss of the learner will be a poor estimate of the in-sample risk. Instead, the
proper way to assess the prediction accuracy of the learner at the feature vectors x, ..., X,
is to draw new response values Y/ ~ f(y|x;), i = 1,...,n, that are independent from the
responses yi, ..., Y, in the training data, and then estimate the in-sample risk of g, via

1 n
- L Y/9 T\Ai)).
n; oss(Y;, g:(x;))

For a fixed training set 7, we can compare the training loss of the learner with the
in-sample risk. Their difference,

op, = in(gT) - fT(g‘r)’

is called the optimism (of the training loss), because it measures how much the training
loss underestimates (is optimistic about) the unknown in-sample risk. Mathematically, it is
simpler to work with the expected optimism:

Elops | X; = x1,..., X, = x,,] =: Ex ops,

where the expectation is taken over a random training set 7, conditional on X; = x;,
i =1,...,n. For ease of notation, we have abbreviated the expected optimism to Ex op,-,
where Ex denotes the expectation operator conditional on X; = x;,i = 1,...,n. As in Ex-
ample 2.1, the feature vectors are stored as the rows of an nX p matrix X. It turns out that the
expected optimism for various loss functions can be expressed in terms of the (conditional)
covariance between the observed and predicted response.

Theorem 2.2: Expected Optimism

For the squared-error loss and 0-1 loss with 0—1 response, the expected optimism is

2 n
Ex opy = - > Covx(gr(x:), Y)). (2.24)
i=1

Proof: In what follows, all expectations are taken conditional on X; = xq,..., X, = x,,.
Let Y; be the response for x; and let ?, = g7(x;) be the predicted value. Note that the latter
depends on Yi,...,Y,. Also, let Y/ be an independent copy of Y; for the same x;, as in
(2.23). In particular, Y] has the same distribution as ¥; and is statistically independent of

all {Y;}, including Y;, and therefore is also independent of ?, We have

Ex op, = — ZEX [/ =Y - (v - V)] ZEX (¥ - Y))Y]

:;Z(EX[Y,-Y ~ ExY,ExY)) Z@ovm,m



Statistical Learning

37

The proof for the 0—1 loss with 0—1 response is left as Exercise 4. O

In summary, the expected optimism indicates how much, on average, the training loss
deviates from the expected in-sample risk. Since the covariance of independent random
variables is zero, the expected optimism is zero if the learner g+ is statistically independent
from the responses Yi,...,7Y,.

B Example 2.3 (Polynomial Regression (cont.)) We continue Example 2.2, where the
components of the response vector Y = [Y1,...,Y,]" are independent and normally distrib-
uted with variance £* = 25 (the irreducible error) and expectations ExY; = g*(x;) = xS,
i = 1,...,n. Using the formula (2.15) for the least-squares estimator E, the expected op-
timism (2.24) is

23" Cov (x77.¥) = 21r(Covs (X ¥)) = Zir (Covs (XX°Y.7)
i=1

2w (XX*Covy (Y. Y)) _ 20tr(XXY) 20
n n n

In the last equation we used the cyclic property of the trace (Theorem A.1): tr(XX™) =
tr(X*X) = tr(I,), assuming that rank(X) = p. Therefore, an estimate for the in-sample risk
(2.23) is:

Cin(ge) = Ce(ge) + 26 p/n, (2.25)

where we have assumed that the irreducible risk £* is known. Figure 2.9 shows that this
estimate is very close to the test loss from Figure 2.7. Hence, instead of computing the test
loss to assess the best model complexity p, we could simply have minimized the training
loss plus the correction term 2£* p/n. In practice, £* also has to be estimated somehow.

\
150 - & -test loss
\ —e—in-sample risk est.

100

50

2 4 6 8 10 12 14 16 18
Number of parameters p

Figure 2.9: In-sample risk estimate Zn(gT) as a function of the number of parameters p of
the model. The test loss is superimposed as a blue dashed curve.

15 357



38

Estimating Risk

= 24

CROSS-VALIDATION

FOLDS

K-roLD
CROSS-VALIDATION

2.5.2 Cross-Validation

In general, for complex function classes G, it is very difficult to derive simple formulas of
the approximation and statistical errors, let alone for the generalization risk or expected
generalization risk. As we saw, when there is an abundance of data, the easiest way to
assess the generalization risk for a given training set 7 is to obtain a test set 7" and evaluate
the test loss (2.7). When a sufficiently large test set is not available but computational
resources are cheap, one can instead gain direct knowledge of the expected generalization
risk via a computationally intensive method called cross-validation.

The idea is to make multiple identical copies of the data set, and to partition each copy
into different training and test sets, as illustrated in Figure 2.10. Here, there are four copies
of the data set (consisting of response and explanatory variables). Each copy is divided into
a test set (colored blue) and training set (colored pink). For each of these sets, we estimate
the model parameters using only training data and then predict the responses for the test
set. The average loss between the predicted and observed responses is then a measure for
the predictive power of the model.

Resp. Expl. Resp.Expl. Resp.Expl. Resp.Expl.

test

test

test

test

Figure 2.10: An illustration of four-fold cross-validation, representing four copies of the
same data set. The data in each copy is partitioned into a training set (pink) and a test
set (blue). The darker columns represent the response variable and the lighter ones the
explanatory variables.

In particular, suppose we partition a data set 7~ of size n into K folds Cy, . . ., Ck of sizes
ni,...,ng (hence, ny +---+ ng = n). Typically ny * n/K, k=1,..., K.

Let £¢, be the test loss when using Cy as test data and all remaining data, denoted 7,
as training data. Each £, is an unbiased estimator of the generalization risk for training set
T _i; that is, for £(g7,).

The K-fold cross-validation loss is the weighted average of these risk estimators:

K

ng
Z ; ka (gT—k)

k=1

K
;l Z Z Loss(gr . (x:), y:)

k=1 ieCy

CVg

1 n
= - Loss (x),V:),
. Z] (874 (XD: )



Statistical Learning

39

where the function « : {1,...,n} — {1,..., K} indicates to which of the K folds each
of the n observations belongs. As the average is taken over varying training sets {7_;}, it
estimates the expected generalization risk E £(gs), rather than the generalization risk €(g)
for the particular training set 7.

B Example 2.4 (Polynomial Regression (cont.)) For the polynomial regression ex-
ample, we can calculate a K-fold cross-validation loss with a nonrandom partitioning of the
training set using the following code, which imports the previous code for the polynomial
regression example. We omit the full plotting code.

polyregCV.py

from polyreg3 import *

K_vals = [5, 10, 100] # number of folds
cv = np.zeros((len(K_vals), max_p)) # cv loss
X = np.ones((n, 1))

for p in p_range:
if p > 1:
X = np.hstack((X, u**(p-1)))
j =209
for K in K_vals:
loss = []
for k in range(l, K+1):
# integer indices of test samples
test_ind = ((n/K)*(k-1) + np.arange(l,n/K+1)-1).astype('int')
train_ind = np.setdiffld(np.arange(n), test_ind)

X_train, y_train = X[train_ind, :], y[train_ind, :]
X_test, y_test = X[test_ind, :], y[test_ind]

# fit model and evaluate test loss
betahat = solve(X_train.T @ X_train, X_train.T @ y_train)
loss.append(norm(y_test - X_test @ betahat) ** 2)

cv[j, p-1] = sum(loss)/n
j +=1

# basic plotting
plt.plot(p_range, cv[0, :] .
plt.plot(p_range, cv[1l, :], 'r'")
plt.plot(p_range, cv[2, :], 'b--")
plt.show ()



https://github.com/DSML-book/Programs/blob/master/Chapter2/polyregCV.py

40

Modeling Data

LEAVE-ONE-OUT
CROSS-VALIDATION

1= 174

MODEL

B 429

=" 429

1= 425

300] T K=3 H
—— K=10 H
--- K=100 !
& 1
£ 250 !
1
S 1
e I
5 200 !
5 1
? 1
1
g 150 - !
v 1
o I
£ 100 :
X I
1
]
50 A [

2 4 6 8 10 12 14 16 18
Number of parameters p

Figure 2.11: K-fold cross-validation for the polynomial regression example.

Figure 2.11 shows the cross-validation loss for K € {5, 10, 100}. The case K = 100 cor-
responds to the leave-one-out cross-validation, which can be computed more efficiently

using the formula in Theorem 5.1. [ |

2.6 Modeling Data

The first step in any data analysis is to model the data in one form or another. For example,
in an unsupervised learning setting with data represented by a vector x = [x,...,x,]", a
very general model is to assume that x is the outcome of a random vector X = [X;,...,X,]"
with some unknown pdf f. The model can then be refined by assuming a specific form of

f.
When given a sequence of such data vectors xy, .. ., x,, one of the simplest models is to
assume that the corresponding random vectors Xy, ..., X, are independent and identically

distributed (iid). We write

X, .. X, %f or X,....X, " Dist,
to indicate that the random vectors form an iid sample from a sampling pdf f or sampling
distribution Dist. This model formalizes the notion that the knowledge about one variable
does not provide extra information about another variable. The main theoretical use of
independent data models is that the joint density of the random vectors X1, ..., X, is simply
the product of the marginal ones; see Theorem C.1. Specifically,

fxnox, (X, x,) = f(x) - f(x).

In most models of this kind, our approximation or model for the sampling distribution is
specified up to a small number of parameters. That is, g(x) is of the form g(x|f) which
is known up to some parameter vector 8. Examples for the one-dimensional case (p = 1)
include the N(u, 02), Bin(n, p), and Exp(A) distributions. See Tables C.1 and C.2 for other



Statistical Learning

41

common sampling distributions.

Typically, the parameters are unknown and must be estimated from the data. In a non-
parametric setting the whole sampling distribution would be unknown. To visualize the
underlying sampling distribution from outcomes xj, ..., x, one can use graphical repres-
entations such as histograms, density plots, and empirical cumulative distribution func-
tions, as discussed in Chapter 1.

If the order in which the data were collected (or their labeling) is not informative or
relevant, then the joint pdf of Xy, ..., X, satisfies the symmetry:

Ixi.... Xn(J‘?l,---,-’Cn):fx,rl ..... X”,,(xm,---,xnn) (2.26)

for any permutation ry,...,n, of the integers 1,...,n. We say that the infinite sequence
X1, X>, ... 1s exchangeable if this permutational invariance (2.26) holds for any finite subset
of the sequence. As we shall see in Section 2.9 on Bayesian learning, it is common to
assume that the random vectors X1, ..., X,, are a subset of an exchangeable sequence and
thus satisfy (2.26). Note that while iid random variables are exchangeable, the converse is
not necessarily true. Thus, the assumption of an exchangeable sequence of random vectors
is weaker than the assumption of iid random vectors.

Figure 2.12 illustrates the modeling tradeoffs. The keywords within the triangle repres-
ent various modeling paradigms. A few keywords have been highlighted, symbolizing their
importance in modeling. The specific meaning of the keywords does not concern us here,
but the point is there are many models to choose from, depending on what assumptions are
made about the data.

High

A

Low None

neural net

0O
o graphical = u)1>
3 mixture Q "
ko] . 0 C
= nonparametric =y 3
(>E latent hierarchical g S
~ ; ; = =
< semi parametric . Q’ o
arametric Bayesian P
P independence 0

linear
Gaussian

generalized linear

mixed

state space

time series

_— Markov
logistic

Poisson normal linear exponential

Low High Specific

Figure 2.12: Illustration of the modeling dilemma. Complex models are more generally
applicable, but may be difficult to analyze. Simple models may be highly tractable, but
may not describe the data accurately. The triangular shape signifies that there are a great
many specific models but not so many generic ones.

On the one hand, models that make few assumptions are more widely applicable, but at
the same time may not be very mathematically tractable or provide insight into the nature
of the data. On the other hand, very specific models may be easy to handle and interpret, but

EXCHANGEABLE



42

Modeling Data

KULLBACK—

LEIBLER
DIVERGENCE

may not match the data very well. This tradeoff between the tractability and applicability of
the model is very similar to the approximation—estimation tradeoff described in Section 2.4.

In the typical unsupervised setting we have a training set T = {xy, ..., x,} that is viewed
as the outcome of 7 iid random variables X, ..., X,, from some unknown pdf f. The ob-
jective is then to learn or estimate f from the finite training data. To put the learning in
a similar framework as for supervised learning discussed in the preceding Sections 2.3—
2.5, we begin by specifying a class of probability density functions G, := {g(- | 6), 8 € O},
where 6 is a parameter in some subset ©® of R”. We now seek the best g in G, to minimize
some risk. Note that G, may not necessarily contain the true f even for very large p.

We stress that our notation g(x) has a different meaning in the supervised and unsu-
pervised case. In the supervised case, g is interpreted as a prediction function for a
response y; in the unsupervised setting, g is an approximation of a density f.

For each x we measure the discrepancy between the true model f(x) and the hypothes-
ized model g(x | 0) using the loss function

f(x)
g(x|0)

The expected value of this loss (that is, the risk) is thus

f(X) f fx)
£(2) = El 2.27
) ng(XlO) f(x)In e |0) (2.27)

The integral in (2.27) provides a fundamental way to measure the distance between two
densities and is called the Kullback—Leibler (KL) divergence® between f and g(- | ). Note
that the KL divergence is not symmetric in f and g(-|6). Moreover, it is always greater
than or equal to O (see Exercise 15) and equal to O when f = g(-|8).

Using similar notation as for the supervised learning setting in Table 2.1, define g as
the global minimizer of the risk in the class G,; that is, g% = argmingegp {(g). If we define

Loss(f(x),g(x[60)) = In

=In f(x) —Ing(x|@).

0" = argmin E Loss(f(X), g(X0)) = argminf(lnf(x) —Ing(x|6))f(x)dx
0 0
= argmax f f(x)Ing(x|0) dx = argmax Eln g(X | 6),
0 0

then g% = g(-|0*) and learning g% is equivalent to learning (or estimating) 6*. To learn 6"
from a training set T = {xy, ..., x,} we then minimize the training loss,

1 & 1 & 1 &
- Zl Loss(/(x;). g(x;16)) = —— Zl In g(x;16) + ~ Zl In f(x;),

giving:

1 n
6, := argmax — > Ing(x:|6). (2.28)
L

2Sometimes called cross-entropy distance.



Statistical Learning 43
As the logarithm is an increasing function, this is equivalent to
5,, 1= argmax g(x;10),
en rl[
where []7, g(x;|6) is the likelihood of the data; that is, the joint density of the {X,} eval-
uated at the points {x;}. We therefore have recovered the classical maximum likelihood
estimate of 6. MAXIMUM
When the risk €(g(- | #)) is convex in € over a convex set ®, we can find the maximum LH;ELTIIT&?;
likelihood estimator by setting the gradient of the training loss to zero; that is, we solve n@ 456
LS Sx,16) = 0
-- x;16) =0,
i
where S(x|6) := W is the gradient of In g(x | @) with respect to 8 and is often called
the score. SCORE

B Example 2.5 (Exponential Model) Suppose we have the training data 7, = {x1, ..., x,},
which is modeled as a realization of n positive iid random variables: X, ..., X, ~ig f(x).
We select the class of approximating functions G to be the parametric class {g : g(x|6) =
fexp(—x0),x > 0,0 > 0}. In other words, we look for the best g¢ within the family of
exponential distributions with unknown parameter 6 > 0. The likelihood of the data is

| [eGil0) = |0exp(-6x) = exp(-6n%, +nno)
i=1 i=1

and the score is S (x|6) = —x+6~'. Thus, maximizing the likelihood with respect to 6 is the
same as maximizing —-6nX, + nln@ or solving — 3", S(x;10)/n = X, — 6~' = 0. In other
words, the solution to (2.28) is the maximum likelihood estimate 6, = 1/Xx,,. [ |

In a supervised setting, where the data is represented by a vector x of explanatory
variables and a response y, the general model is that (x,y) is an outcome of (X,Y) ~ f
for some unknown f. And for a training sequence (x;,y;),. .., (X,,y,) the default model
assumption is that (X, Y1),...,(X,, Y,) ~iia f- As explained in Section 2.2, the analysis
primarily involves the conditional pdf f(y|x) and in particular (when using the squared-
error loss) the conditional expectation g*(x) = E[Y | X = x]. The resulting representation
(2.2) allows us to then write the response at X = x as a function of the feature x plus an
error term: Y = g*(x) + &(x).

This leads to the simplest and most important model for supervised learning, where we
choose a linear class G of prediction or guess functions and assume that it is rich enough
to contain the true g*. If we further assume that, conditional on X = x, the error term &
does not depend on x, that is, E& = 0 and Var & = 0%, then we obtain the following model.



44

Modeling Data

LINEAR MODEL

MODEL MATRIX

= 167

= 26

Definition 2.1: Linear Model

In a linear model the response Y depends on a p-dimensional explanatory variable
X =[x,..., xp]T via the linear relationship

Y=x"B+e, (2.29)

where E¢ = 0 and Vare = o2

Note that (2.29) is a model for a single pair (x, Y). The model for the training set
{(x;, Y;)} is simply that each Y; satisfies (2.29) (with x = x;) and that the {Y;} are independ-

ent. Gathering all responses in the vector Y = [Y1,...,Y,]", we can write

Y =XB+¢, (2.30)
where € = [g1,...,&,]" is a vector of iid copies of &€ and X is the so-called model matrix,
with rows xlT, ..., X, . Linear models are fundamental building blocks of statistical learning

algorithms. For this reason, a large part of Chapter 5 is devoted to linear regression models.

B Example 2.6 (Polynomial Regression (cont.)) For our running Example 2.1, we see
that the data is described by a linear model of the form (2.30), with model matrix X given
in (2.10). [ |



Statistical Learning

45

Before we discuss a few other models in the following sections, we would like to em-
phasize a number of points about modeling.

e Any model for data is likely to be wrong. For example, real data (as opposed to
computer-generated data) are often assumed to come from a normal distribution,
which is never exactly true. However, an important advantage of using a normal
distribution is that it has many nice mathematical properties, as we will see in Sec-
tion 2.7.

e Most data models depend on a number of unknown parameters, which need to be
estimated from the observed data.

e Any model for real-life data needs to be checked for suitability. An important cri-
terion is that data simulated from the model should resemble the observed data, at
least for a certain choice of model parameters.

Here are some guidelines for choosing a model. Think of the data as a spreadsheet or
data frame, as in Chapter 1, where rows represent the data units and the columns the data
features (variables, groups).

o First establish the fype of the features (quantitative, qualitative, discrete, continuous,
etc.).

o Assess whether the data can be assumed to be independent across rows or columns.

e Decide on the level of generality of the model. For example, should we use a simple
model with a few unknown parameters or a more generic model that has a large
number of parameters? Simple specific models are easier to fit to the data (low es-
timation error) than more general models, but the fit itself may not be accurate (high
approximation error). The tradeoffs discussed in Section 2.4 play an important role
here.

e Decide on using a classical (frequentist) or Bayesian model. Section 2.9 gives a short
introduction to Bayesian learning.

2.7 Multivariate Normal Models

A standard model for numerical observations xi,...,x, (forming, e.g., a column in a
spreadsheet or data frame) is that they are the outcomes of iid normal random variables

iid

X1, ..., X, ~ N, o).

It is helpful to view a normally distributed random variable as a simple transformation
of a standard normal random variable. To wit, if Z has a standard normal distribution, then
X = u + oZ has a N(u, o) distribution. The generalization to n dimensions is discussed
in Appendix C.7. We summarize the main points: Let Z,,...,Z, i N(0, 1). The pdf of
Z =1[Z,,...,7,]" (thatis, the joint pdf of Z;,...,Z,) is given by

n

1 1.2 n 1,7
J2R)=| | —=e" =Q2n)2e 2", z€eR" (2.31)
=11

15 434



46

Multivariate Normal Models

= 432

MULTIVARIATE
NORMAL

= 60

We write Z ~ N(0,1,,) and say that Z has a standard normal distribution in R”. Let
X=u+BZ (2.32)

for some m X n matrix B and m-dimensional vector u. Then X has expectation vector u and
covariance matrix X = BBT; see (C.20) and (C.21). This leads to the following definition.

Definition 2.2: Multivariate Normal Distribution

An m-dimensional random vector X that can be written in the form (2.32) for some
m-dimensional vector g and m X n matrix B, with Z ~ N(0,L,), is said to have a
multivariate normal or multivariate Gaussian distribution with mean vector g and
covariance matrix ¥ = BBT. We write X ~ N(u, X).

The m-dimensional density of a multivariate normal distribution has a very similar form
to the density of the one-dimensional normal distribution and is given in the next theorem.
We leave the proof as an exercise; see Exercise 5.

Theorem 2.3: Density of a Multivariate Random Vector

Let X ~ N(u, X), where the m X m covariance matrix X is invertible. Then X has pdf

1 -
fr(x) = ———— e 1@ WE@W e Rm (2.33)

V(@2mym x|

Figure 2.13 shows the pdfs of two bivariate (that is, two-dimensional) normal distribu-
tions. In both cases the mean vector is g = [0,0]" and the variances (the diagonal elements
of X) are 1. The correlation coefficients (or, equivalently here, the covariances) are respect-
ively o =0 and o = 0.8.

Figure 2.13: Pdfs of bivariate normal distributions with means zero, variances 1, and cor-
relation coefficients O (left) and 0.8 (right).



Statistical Learning 47
The main reason why the multivariate normal distribution plays an important role in

data science and machine learning is that it satisfies the following properties, the details

and proofs of which can be found in Appendix C.7: I 434

1. Affine combinations are normal.
2. Marginal distributions are normal.

3. Conditional distributions are normal.

2.8 Normal Linear Models

Normal linear models combine the simplicity of the linear model with the tractability of
the Gaussian distribution. They are the principal model for traditional statistics, and include
the classic linear regression and analysis of variance models.

Definition 2.3: Normal Linear Model

In a normal linear model the response Y depends on a p-dimensional explanatory
variable x = [xy,...,x,]", via the linear relationship

Y=x"B+e, (2.34)

where & ~ N(0, 02).

Thus, a normal linear model is a linear model (in the sense of Definition 2.1) with
normal error terms. Similar to (2.30), the corresponding normal linear model for the whole
training set {(x;, ¥;)} has the form

Y =XB+¢, (2.35)

where X is the model matrix comprised of rows xlT, ...,x, and & ~ N(0, o’L,). Con-
sequently, ¥ can be written as Y = X8 + o Z, where Z ~ N(0,1,,), so that Y ~ N(XB, 0*1,,).
It follows from (2.33) that its joint density is given by

gy |B. 0% X) = 2no?y i e 2N, (2.36)

Estimation of the parameter 8 can be performed via the least-squares method, as discussed
in Example 2.1. An estimate can also be obtained via the maximum likelihood method.
This simply means finding the parameters o> and 8 that maximize the likelihood of the
outcome y, given by the right-hand side of (2.36). It is clear that for every value of o
the likelihood is maximal when |ly — X is minimal. As a consequence, the maximum
likelihood estimate for B is the same as the least-squares estimate (2.15). We leave it as an
exercise (see Exercise 18) to show that the maximum likelihood estimate of o2 is equal to

= _ ly - XBP
n

, (2.37)

where E is the maximum likelihood estimate (least squares estimate in this case) of 8.

NORMAL LINEAR
MODEL

IS

IS

46

64



48

Bayesian Learning

= 4]

2.9 Bayesian Learning

In Bayesian unsupervised learning, we seek to approximate the unknown joint density
f(x1,...,x,) of the training data 7, = {X, ..., X,} via a joint pdf of the form

f [rl g(x;| 0)] w(6)de, (2.38)
i=1

where g(-|6) belongs to a family of parametric densities G, := {g(-|6), § € O} (viewed
as a family of pdfs conditional on a parameter € in some set @ c R”) and w(0) is a pdf
that belongs to a (possibly different) family of densities ‘W ,. Note how the joint pdf (2.38)
satisfies the permutational invariance (2.26) and can thus be useful as a model for training
data which is part of an exchangeable sequence of random variables.

Following standard practice in a Bayesian context, instead of writing fx(x) and
fxiv(x|y) for the pdf of X and the conditional pdf of X given Y, one simply writes
f(x)and f(x|y). If Y is a different random variable, its pdf (at y) is thus denoted by

FO).

Thus, we will use the same symbol g for different (conditional) approximating probab-
ility densities and f for the different (conditional) true and unknown probability densities.
Using Bayesian notation, we can write g(7|6) = []_, g(x;|0) and thus the approximating
joint pdf (2.38) can then be written as f g(t]16)w(0) df and the true unknown joint pdf as
J@) = fx1,...,x).

Once G, and ‘W), are specified, selecting an approximating function g(x) of the form

g(x) = f g(x[6)w(6)de

is equivalent to selecting a suitable w from W ,. Similar to (2.27), we can use the Kullback—
Leibler risk to measure the discrepancy between the proposed approximation (2.38) and the
true f(7):

£T) f o)
£ =El = 1 dr. 2.39
W= Foweaw J O Tarioweaw ™ ¢

The main difference with (2.27) is that since the training data is not necessarily iid (it may
be exchangeable, for example), the expectation must be with respect to the joint density of
7, not with respect to the marginal f(x) (as in the iid case).

Minimizing the training loss is equivalent to maximizing the likelihood of the training
data 7; that is, solving the optimization problem

max f g(t|0)w(0)de,
W,

weW,

where the maximization is over an appropriate class ‘W, of density functions that is be-
lieved to result in the smallest KL risk.



Statistical Learning

49

Suppose that we have a rough guess, denoted wy(6), for the best w € W, that min-
imizes the Kullback—Leibler risk. We can always increase the resulting likelihood Ly :=
f g(t]1@)wy(0) df by instead using the density w(0) := wy(0) g(7|0)/Ly, giving a likeli-
hood L; := f g(t]10)w;(0)de. To see this, write Ly and L, as expectations with respect to
wy. In particular, we can write

Ly=E, g0 and L,=E, gt|0) =E,g*(0)/L,.
It follows that

1 1
Ly = Lo = 7B, [£(716) = L5 = -Var,,[g(r]6)] > 0. (2.40)

We may thus expect to obtain better predictions using w, instead of wy, because w; has
taken into account the observed data T and increased the likelihood of the model. In fact,
if we iterate this process (see Exercise 20) and create a sequence of densities wy, wy, ...
such that w,(6) o w,_1(6) g(7| ), then w,(#) concentrates more and more of its probability
mass at the maximum likelihood estimator 6 (see (2.28)) and in the limit equals a (degen-
erate) point-mass pdf at 6. In other words, in the limit we recover the maximum likelihood
method: g-(x) = g(x|6). Thus, unless the class of densities ‘W, is restricted to be non-
degenerate, maximizing the likelihood as much as possible leads to a degenerate choice
for w(@). _

In many situations, the maximum likelihood estimate g(7|6) is either not an ap-
propriate approximation to f(7) (see Example 2.9), or simply fails to exist (see Exer-
cise 10 in Chapter 4). In such cases, given an initial non-degenerate guess wy(6) = g(8),
one can obtain a more appropriate and non-degenerate approximation to f(7) by taking
w(0) = wi(0) « g(7]6) g(0) in (2.38), giving the following Bayesian learner of f(x):

(r16) g(6)
T(>::f x|16)—2
S ) ST @ 19) s do

where f g(t]d) g(@) d? = g(7). Using Bayes’ formula for probability densities,
(716) g(0)
5017 = E82 (2.42)
8(1)

we can write w(6) = g(@| 7). With this notation, we have the following definitions.

(2.41)

Definition 2.4: Prior, Likelihood, and Posterior

Let 7 and G, := {g(-|6),0 € O} be the training set and family of approximating
functions.

o A pdf g(0) that reflects our a priori beliefs about 0 is called the prior pdf.
e The conditional pdf g(7|0) is called the likelihood.

e Inference about 6 is given by the posterior pdf g(6|7), which is proportional
to the product of the prior and the likelihood:

8(0]7) o< g(7]6) g(6).

5 162

1= 428

PRIOR

LIKELIHOOD

POSTERIOR



50

Bayesian Learning

PRIOR PREDICTIVE

DENSITY

POSTERIOR
PREDICTIVE
DENSITY

UNINFORMATIVE

PRIOR

\
~

R

|

/
-
)=~

S

B Remark 2.1 (Early Stopping) Bayes iteration is an example of an “early stopping”
heuristic for maximum likelihood optimization, where we exit after only one step. As ob-
served above, if we keep iterating, we obtain the maximum likelihood estimate (MLE). In
a sense the Bayes rule provides a regularization of the MLE. Regularization is discussed in
more detail in Chapter 6; see also Example 2.9. The early stopping rule is also of benefit
in regularization; see Exercise 20 in Chapter 6. [ |

On the one hand, the initial guess g(#) conveys the a priori (prior to training the
Bayesian learner) information about the optimal density in W), that minimizes the KL risk.
Using this prior g(6), the Bayesian approximation to f(x) is the prior predictive density:

g(x) = f 2(x16) g(0)de.

On the other hand, the posterior pdf conveys improved knowledge about this optimal dens-
ity in ‘W, after training with 7. Using the posterior g(@|7), the Bayesian learner of f(x) is
the posterior predictive density:

g(x) = g(x|7) = fg(xle)g(OlT)dO,

where we have assumed that g(x |6, 7) = g(x|0); that is, the likelihood depends on 7 only
through the parameter 6.
The choice of the prior is typically governed by two considerations:

1. the prior should be simple enough to facilitate the computation or simulation of the
posterior pdf;

2. the prior should be general enough to model ignorance of the parameter of interest.

Priors that do not convey much knowledge of the parameter are said to be uninformat-
ive. The uniform or flat prior in Example 2.9 (to follow) is frequently used.

For the purpose of analytical and numerical computations, we can view 6 as a ran-
dom vector with prior density g(#), which after training is updated to the posterior
density g(@| 7).

The above thinking allows us to write g(x | 7) « f g(x10) g(r|0) g(0) do, for example,
thus ignoring any constants that do not depend on the argument of the densities.

B Example 2.7 (Normal Model) Suppose that the training data 7 = {Xi,...,X,} 1s
modeled using the likelihood g(x| ) that is the pdf of

X160 ~ N, o),

where 6 := [u,0?]". Next, we need to specify the prior distribution of @ to complete
the model. We can specify prior distributions for u and o separately and then take their



Statistical Learning 51
product to obtain the prior for vector 6 (assuming independence). A possible prior distri-
bution for u is
p~ N, ¢?). (2.43)
It is typical to refer to any parameters of the prior density as hyperparameters of the  HYPERPARAMET-
ERS

Bayesian model. Instead of giving directly a prior for o (or o), it turns out to be con-
venient to give the following prior distribution to 1/02:

1
= Gamma(a, B). (2.44)
The smaller « and 3 are, the less informative is the prior. Under this prior, o is said to have

an inverse gamma’® distribution. If 1/Z ~ Gamma(a, ), then the pdf of Z is proportional
to exp (—=/z) /z**! (Exercise 19). The Bayesian posterior is then given by:

g, 02| 7) & g(u) X g(o) x g(t |y, %)

o exp {_(ﬂ 7. V)Z} X Nl {_ﬁ/o-z} CXp {_ Zi(xi - N)z/(20.2)}

X
2¢2 (0-2)a+1 (0-2)n/2
2 — 2. Q2
2\-n/2-a-1 u-v) B (—x)"+S,
«oytep{ - B (RS
where §2 := 1 31,52 - %) = 1 3.(x; - %,)? is the (scaled) sample variance. All inference

about (i, 02) is then represented by the posterior pdf. To facilitate computations it is helpful
to find out if the posterior belongs to a recognizable family of distributions. For example,
the conditional pdf of u given o and 7 is

('u_V)Z _ (ﬂ_%rz)z}

2

which after simplification can be recognized as the pdf of
W] 0?,7) ~ N (ya¥a + (1 = yu)vs ya0?/n), (2.45)

where we have defined the weight parameter: y,, := % / (# + (%) . We can then see that the
posterior mean E[u | 02, 7] = v, X, + (1 — y,)v is a weighted linear combination of the prior
mean v and the sample average X,. Further, as n — oo, the weight v, — 1 and thus the
posterior mean approaches the maximum likelihood estimate Xx,,. [ ]

It is sometimes possible to use a prior g(6) that is not a bona fide probability density, in the
sense that f g(0)df = oo, as long as the resulting posterior g(@| 1) « g(7|0)g(0) is a proper
pdf. Such a prior is called an improper prior.

B Example 2.8 (Normal Model (cont.)) An example of an improper prior is obtained
from (2.43) when we let ¢ — oo (the larger ¢ is, the more uninformative is the prior).

3Reciprocal gamma distribution would have been a better name.

INVERSE GAMMA

= 64

IMPROPER PRIOR



52

Bayesian Learning

CREDIBLE
INTERVAL

= 457

CREDIBLE REGION

Then, g(u) « 1 is a flat prior, but f g(u) du = oo, making it an improper prior. Neverthe-
less, the posterior is a proper density, and in particular the conditional posterior of (u| o2, 7)
simplifies to

(ulo?, 1) ~ N(En, 0'2/1’1) ,
because the weight parameter y, goes to 1 as ¢ — oo. The improper prior g(u) « 1 also
allows us to simplify the posterior marginal for o:

—(n-1)/2—a— +nS,%/2
g(O'le) = fg(y, o'le) du « (0-2) (n=1)/2~c 1exp {_ﬁT},

which we recognize as the density corresponding to

1 -1 ng2
el Gamma(a+ 5 B+ 3 n)
In addition to g(u) o 1, we can also use an improper prior for o2, If we take the limit @ — 0
and 8 — 0 in (2.44), then we also obtain the improper prior g(c?) « 1/0? (or equivalently
g(1/0?) « 1/0?). In this case, the posterior marginal density for o implies that:

nSﬁ )
0_2 T~ Xn-1

and the posterior marginal density for y implies that:
H— }n

S./Vn—-1

In general, deriving a simple formula for the posterior density of 6 is either impossible

or too tedious. Instead, the Monte Carlo methods in Chapter 3 can be used to simulate
(approximately) from the posterior for the purposes of inference and prediction. [ |

|T~u4. (2.46)

One way in which a distributional result such as (2.46) can be useful is in the construc-
tion of a 95% credible interval I for the parameter y; that is, an interval 7 such that the
probability P[u € 7 | 7] is equal to 0.95. For example, the symmetric 95% credible interval
is
I
- ')’, xn
\/n - Vn —

where 7y is the 0.975-quantile of the t,_; distribution. Note that the credible interval is
not a random object and that the parameter u is interpreted as a random variable with a
distribution. This is unlike the case of classical confidence intervals, where the parameter
is nonrandom, but the interval is (the outcome of) a random object.

As a generalization of the 95% Bayesian credible interval we can define a 1 —« credible
region, which is any set R satisfying

I =\x,

P[OGRIT]:f g@|1)do>1-a. (2.47)
feR



Statistical Learning

53

B Example 2.9 (Bayesian Regularization of Maximum Likelihood) Consider model-
ing the number of deaths during birth in a maternity ward. Suppose that the hospital data
consists of 7 = {xi,...,x,}, with x; = 1 if the i-th baby has died during birth and x; = 0
otherwise, fori = 1,...,n. A possible Bayesian model for the data is 6 ~ U(0, 1) (uniform

prior) with (X, ..., X, |0) i Ber(6). The likelihood is therefore
grlo) =[] -0 =01 -0,
i=1
where s = x| + - - - + x,, is the total number of deaths. Since g(6) = 1, the posterior pdf is
gl@ln) = (1-0"", 6€[0,1],
which is the pdf of the Beta(s + 1,n — s + 1) distribution. The normalization constant is

(n+ 1)(’3’). The posterior pdf is shown in Figure 2.14 for (s, n) = (0, 100). It is not difficult

100

80

60 F / posterior mean

8(0[7)

40
95% credible interval

20 -

0 0.02 0.04 0.06 0.08 0.1

Figure 2.14: Posterior pdf for 8, with n = 100 and s = 0.

to see that the maximum a posteriori (MAP) estimate of 6 (the mode or maximizer of the
posterior density) is

argmax g(0| 1) = 5,
0 n

which agrees with the maximum likelihood estimate. Figure 2.14 also shows that the left
one-sided 95% credible interval for 6 is [0,0.0292], where 0.0292 is the 0.95 quantile
(rounded) of the Beta(1, 101) distribution.

Observe that when (s, n) = (0, 100) the maximum likelihood estimate 6 = 0 infers that
deaths at birth are not possible. We know that this inference is wrong — the probability of
death can never be zero, it is simply (and fortunately) too small to be inferred accurately
from a sample size of n = 100. In contrast to the maximum likelihood estimate, the pos-
terior mean E[@| 7] = (s + 1)/(n + 2) is not zero for (s,n) = (0, 100) and provides the more
reasonable point estimate of 0.0098 for the probability of death.

MAXIMUM A
POSTERIORI



54

Bayesian Learning

=122

In addition, while computing a Bayesian credible interval poses no conceptual diffi-
culties, it is not simple to derive a confidence interval for the maximum likelihood estimate
of 6, because the likelihood as a function of 6 is not differentiable at 6 = 0. As a result of
this lack of smoothness, the usual confidence intervals based on the normal approximation
cannot be used. [ ]

We now return to the unsupervised learning setting of Section 2.6, but consider this
from a Bayesian perspective. Recall from (2.39) that the Kullback—Leibler risk for an ap-
proximating function g is

g = ff(T;)[lnf(T,Q) —Ing(r)ldr,,

where 7;, denotes the test data. Since f f(,)In f(7),) d7;, plays no role in minimizing the
risk, we consider instead the cross-entropy risk, defined as

tg) = - f £ Ing(x) dr.

Note that the smallest possible cross-entropy risk is £, = — f f(@)In f(z;) d7,,. The expec-
ted generalization risk of the Bayesian learner can then be decomposed as

. A (AN BT,
Ef(gm—fn+ff(rnnnEg(T;m)deff( = S,

“bias” component “variance” component

where g (1)) = g(1,,|T,) = f g(1,16)g(0|7,)de is the posterior predictive density after
observing 7,.

Assuming that the sets 7, and 7, are comprised of 2n iid random variables with density
f, we can show (Exercise 23) that the expected generalization risk simplifies to

E{(gr,) = EIng(7,) — Elng(72,), (2.48)

where g(7,) and g(72,) are the prior predictive densities of 7, and 7y, respectively.

Let 6, = = argmax, g(@|7,) be the MAP estimator of 8" := argmaerln g(X10). As-
suming that 0, converges to §* (with probability one) and 1Eln g(7,10,) =Elng(X|0") +
O(1/n), we can use the following large-sample approx1mat10n of the expected generaliza-
tion risk.

Theorem 2.4: Approximating the Bayesian Cross-Entropy Risk

For n — oo, the expected cross-entropy generalization risk satisfies:

El(gs,) ~ -Elng(7,) — = ln n, (2.49)

where (with p the dimension of the parameter vector @ and 6, the MAP estimator):

Elng(7,) ~Elng(7,|0,) - lnn (2.50)




Statistical Learning

55

Proof: To show (2.50), we apply Theorem C.21 to In f e "9 g(@) dg, where

1 1 v
() = ——1ng(T;,0) = —— Zlng(Xi|0)—> —Elng(X|0) =: 1) < oo.
n n

i=1

This gives (with probability one)
In f (T 16) g(8) A0 ~ —nr(6") - gln(n).

Taking expectations on both sides and using nr(6*) = nE[r,(6,)] + O(1), we deduce (2.50).
To demonstrate (2.49), we derive the asymptotic approximation of E In g(7,) by repeating
the argument for (2.50), but replacing n with 2n, where necessary. Thus, we obtain:

Elng(7>,) ~ —2nr(0) — gln(Zn).

Then, (2.49) follows from the identity (2.48). O

The results of Theorem 2.4 have two major implications for model selection and assess-
ment. First, (2.49) suggests that —In g(7,,) can be used as a crude (leading-order) asymp-
totic approximation to the expected generalization risk for large n and fixed p. In this
context, the prior predictive density g(77,,) is usually called the model evidence or marginal
likelihood for the class G,,. Since the integral f g(7,10) g(0) da is rarely available in closed
form, the exact computation of the model evidence is typically not feasible and may require
Monte Carlo estimation methods.

Second, when the model evidence is difficult to compute via Monte Carlo methods or
otherwise, (2.50) suggests that we can use the following large-sample approximation:

—2EIng(7,) ~ -21ng(7T,|6,) + pln(n). 2.51)

The asymptotic approximation on the right-hand side of (2.51) is called the Bayesian in-
formation criterion (BIC). We prefer the class G, with the smallest BIC. The BIC is typic-
ally used when the model evidence is difficult to compute and 7 is sufficiently larger than
p. For a fixed p, and as n becomes larger and larger, the BIC becomes a more and more
accurate estimator of —2E In g(7,). Note that the BIC approximation is valid even when the
true density f ¢ G,. The BIC provides an alternative to the Akaike information criterion
(AIC) for model selection. However, while the BIC approximation does not assume that
the true model f belongs to the parametric class under consideration, the AIC assumes
that f € G,. Thus, the AIC is merely a heuristic approximation based on the asymptotic
approximations in Theorem 4.1.

Although the above Bayesian theory has been presented in an unsupervised learn-
ing setting, it can be readily extended to the supervised case. We only need to relabel
the training set 7,. In particular, when (as is typical for regression models) the train-

ing responses Yi,..., Y, are considered as random variables but the corresponding fea-
ture vectors xi,...,X, are viewed as being fixed, then 7, is the collection of random re-
sponses {Yi,...,Y,}. Alternatively, we can simply identify 7, with the response vector

Y =[Yy,...,Y,]". We will adopt this notation in the next example.

1= 450

MODEL EVIDENCE

= 78

BAYESIAN
INFORMATION
CRITERION

5 126



Bayesian Learning

B Example 2.10 (Polynomial Regression (cont.)) Consider Example 2.2 once again, but
now in a Bayesian framework, where the prior knowledge on (02, 8) is specified by
g(d?) =1/0? and B|o? ~ N(0,0?D), and D is a (matrix) hyperparameter. Let £ :=
(X™X + D7!)~!. Then the posterior can be written as:

exp (_ ||y;§2BII2) exp (_l%;'ﬂ)

X X —
Qro?)yn2 Qro?)r2 DYz g2 /g(y)

_ oy I="PB B (n+p+2)T
TP P\ T o T T 252 8.

gB.*y) =

where B8 := XX y and 7 := y"(I — XX ")y/(n + p + 2) are the MAP estimates of 8 and
o2, and g(y) is the model evidence for G ,:

gy = f f g(B,0?,y)dBdo?

—2
212 meXp(‘%) )
= (2ny2D|'2 fo (o2)/2+1 do
IZ|'2T(n/2)

T D2(x(n + p + 2) T
Therefore, based on (2.49), we have
2BL(g7,) = —2Ing(y) = nln|n(n + p +2) 7| - 2InT(n/2) + In |D| - In|Z|.

On the other hand, the minus of the log-likelihood of Y can be written as

— XgI?
gy Bot) = BB o
202 2
IZ2B-BI?  (n+p+2)T> n )
_ ~ In(2rc?).
o2 + o2 + > n(2ro”)

Therefore, the BIC approximation (2.51) is
—2Ing(y |B, )+ (p+ Dinm) = n[Inr5*) + 11+ (p + DIn(n) + (p + 2), (2.52)

where the extra In(n) term in (p + 1)In(n) is due to the inclusion of o in 8 = (¢, B).
Figure 2.15 shows the model evidence and its BIC approximation, where we used a hyper-
parameter D = 10* x I, for the prior density of 8. We can see that both approximations
exhibit a pronounced minimum at p = 4, thus identifying the true polynomial regression
model. Compare the overall qualitative shape of the cross-entropy risk estimate with the
shape of the square-error risk estimate in Figure 2.11.



Statistical Learning

57

800
- —e—model evidence
= o BIC approx.
g 750 -
80
o)
e
Q
g 700
i
D)
Q o o
= 650 - 9
8 S-S - R
S o o
E o °
600 | | | | | | | | |
1 2 3 4 5 6 7 8 9 10

model index p

Figure 2.15: The BIC and marginal likelihood used for model selection.

It is possible to give the model complexity parameter p a Bayesian treatment, in which
we define a prior density on the set of all models under consideration. For example, let
g(p), p =1,...,m be a prior density on m candidate models. Treating the model com-
plexity index p as an additional parameter to # € R”, and applying Bayes’ formula, the
posterior for (6, p) can be written as:

80,p|l7)=g@|p,7)xg(p|T)
_ 8@l0.p)g@[p) slp)gp)
g(tlp) g(r)

posterior of @ given model p  posterior of model p

The model evidence for a fixed p is now interpreted as the prior predictive density of T,
conditional on the model p:

g(tlp) = fg(TIH,p)g(Hlp)dH,

and the quantity g(r) = 27, g(7 | p) g(p) is interpreted as the marginal likelihood of all the
m candidate models. Finally, a simple method for model selection is to pick the index p
with the largest posterior probability:

p = argmax g(p | 1) = argmax g(7| p) g(p).
p p

B Example 2.11 (Polynomial Regression (cont.)) Let us revisit Example 2.10 by giving
the parameter p = 1,...,m, with m = 10, a Bayesian treatment. Recall that we used the
notation 7 = y in that example. We assume that the prior g(p) = 1/m is flat and uninform-
ative so that the posterior is given by

IZI'2T(n/2)
ID|'2(n(n + p +2) Ty

gply) xglylp) =



58

Bayesian Learning

BAYES FACTOR

where all quantities in g(y| p) are computed using the first p columns of X. Figure 2.16
shows the resulting posterior density g(p|y). The figure also shows the posterior density

201/ 2% 5y | p), where

n[Inra?) + 1]+ (p + DIn(n) + (p + 2))
2

gylp) = eXP(—

is derived from the BIC approximation (2.52). In both cases, there is a clear maximum at
p = 4, suggesting that a third-degree polynomial is the most appropriate model for the
data.

1r
0.8 —o—g(pl7)
—6— BIC approx.
— 0.6
&
S
=04 F
0.2
0G & ' O
1 2 3 4 5 6 7 8 9 10

model index p

Figure 2.16: Posterior probabilities for each polynomial model of degree p — 1.

Suppose that we wish to compare two models, say model p = 1 and model p = 2.
Instead of computing the posterior g(p|7) explicitly, we can compare the posterior odds
ratio:

gp=1l0 _gp=1 gklp=1
gp=2l1) glp=2) gtlp=2)
———

Bayes factor By |2

This gives rise to the Bayes factor B;| ;, whose value signifies the strength of the evidence
in favor of model i over model j. In particular B;|; > 1 means that the evidence in favor for
model i is larger.

B Example 2.12 (Savage-Dickey Ratio) Suppose that we have two models. Model p =
2 has a likelihood g(7|u, v, p = 2), depending on two parameters. Model p = 1 has the
same functional form for the likelihood but now v is fixed to some (known) vy; that
is, g(t|lu,p=1) =g(t|u,v = vy, p = 2). We also assume that the prior information on u



Statistical Learning

59

for model 1 is the same as that for model 2, conditioned on v = v,. That is, we assume
gulp=1)=gulv=ry,p=2). As model 2 contains model 1 as a special case, the latter
is said to be nested inside model 2. We can formally write (see also Exercise 26):

erlp=1)= fg(rlu,p — Dgulp = Ddu

:fg(ﬂ/l,‘/:VO,P=2)g(ﬂ|V=v0,p:2)d/,t

gn,v=wlp=2)

=gtlv=vy,p=2) =

gv=wlp=2)"
Hence, the Bayes factor simplifies to
_galp=1) glmv=wlp=2) o 8v=wlT,p=2)
12 = — = - —[8(tlp=2)= — —
gtlp=2) gv=wlp=2) gv=wlp=2)

In other words, By, is the ratio of the posterior density to the prior density of v, evaluated at
v = vy and both under the unrestricted model p = 2. This ratio of posterior to prior densities
is called the Savage—Dickey density ratio. [ ]

Whether to use a classical (frequentist) or Bayesian model is largely a question of con-
venience. Classical inference is useful because it comes with a huge repository of ready-
to-use results, and requires no (subjective) prior information on the parameters. Bayesian
models are useful because the whole theory is based on the elegant Bayes’ formula, and
uncertainty in the inference (e.g., confidence intervals) can be quantified much more nat-
urally (e.g., credible intervals). A usual practice is to “Bayesify” a classical model, simply
by adding some prior information on the parameters.

Further Reading

A popular textbook on statistical learning is [55]. Accessible treatments of mathematical
statistics can be found, for example, in [69], [74], and [124]. More advanced treatments
are given in [10], [25], and [78]. A good overview of modern-day statistical inference
is given in [36]. Classical references on pattern classification and machine learning are
[12] and [35]. For advanced learning theory including information theory and Rademacher
complexity, we refer to [28] and [109]. An applied reference for Bayesian inference is [46].
For a survey of numerical techniques relevant to computational statistics, see [90].

Exercises

1. Suppose that the loss function is the piecewise linear function

Loss(y,) =a (G- y)+ +B -+ a,B>0,

where c, is equal to c if ¢ > 0, and zero otherwise. Show that the minimizer of the risk
{(g) = ELoss(Y, g(X)) satisfies

P[Y < g"(x)| X = x] = a’%ﬁ

In other words, g*(x) is the 8/(a + ) quantile of Y, conditional on X = x.

SAVAGE-DICKEY
DENSITY RATIO



60

Exercises

= 360

= 431

UNBIASED

GAuUsSS—MARKOV
INEQUALITY

5 430

2. Show that, for the squared-error loss, the approximation error £(g%) — £(g*) in (2.16), is
equal to E(g9(X) — g*(X))>. [Hint: expand £(g%) = E(Y — g*(X) + g"(X) — g9(X))%.]

3. Suppose G is the class of linear functions. A linear function evaluated at a feature x can
be described as g(x) = B x for some parameter vector B of appropriate dimension. Denote
g9(x) = x7BY and g%(x) = x™B. Show that
, 2 —~ 2 . 2
E(e9(X) - g" (X)) =E(X"B-X"p°) +E(X"B - g"(X)) .
Hence, deduce that the statistical error in (2.16) is £(g9) — £(g9) = E (g9(X) — g9(X)).
4. Show that formula (2.24) holds for the 0—1 loss with 0—1 response.

5. Let X be an n-dimensional normal random vector with mean vector u and covariance
matrix X, where the determinant of X is non-zero. Show that X has joint probability density

1 i -
fx(X) = ——— e T CWEEI xR,

V@) x|

6. Let E = A"y. Using the defining properties of the pseudo-inverse, show that for any
Berr, ~
IAB = yll < [|AB - yll.

7. Suppose that in the polynomial regression Example 2.1 we select the linear class of
functions G, with p > 4. Then, g* € G, and the approximation error is zero, because
2% (x) = g*(x) = x"B, where B = [10, —140, 400, -250,0,...,0]" € R”. Use the tower
property to show that the learner g.(x) = x'g8 with 8 = X"y, assuming rank(X) > 4, is
unbiased:

Egr(x) = g'(x).

8. (Exercise 7 continued.) Observe that the learner g+ can be written as a linear combina-
tion of the response variable: g--(x) = x"X*Y. Prove that for any learner of the form x"Ay,
where A € RP*" is some matrix and that satisfies Ex[x"AY] = g*(x), we have

Varg[x " X*Y] < Varg[x"AY],

where the equality is achieved for A = X*. This is called the Gauss—Markov inequality.
Hence, using the Gauss—Markov inequality deduce that for the unconditional variance:

Var go-(x) < Var[x"AY].
Deduce that A = X" also minimizes the expected generalization risk.

9. Consider again the polynomial regression Example 2.1. Use the fact that Ex ,E = X*h*(u),
where h*(u) = E[Y|U = u] = [h*(wy),...,h"(u,)]", to show that the expected in-sample
risk is:

B @) = IXX*h* @) Lbp
n n’
Also, use Theorem C.2 to show that the expected statistical error is:

Ex (B—B) H,(B - B) = £'te(X* (X" H,) + (X h*®) - B)TH,(X*h*(u) - B).

Ex lin(gr) =" +



Statistical Learning 61
10. Consider the setting of the polynomial regression in Example 2.2. Use Theorem C.19
to prove that I 449

— d . _ _ _
VB, -B,) — N(0. CH,' + H,'M,H,"), (2.53)

where M, := B[ XX (g"(X) — g9(X))*] is the matrix with (i, j)-th entry:

1
f W20 () = b (w))’ du,
0

and H;l is the p X p inverse Hilbert matrix with (i, j)-th entry:
o +i-1\(p+j-1\[i+j-2\
(1) + j - 1)(” - )(” /- )(’ % ) .
p—J p—i i—1

Observe that M, = 0 for p > 4, so that the matrix M, term is due to choosing a restrictive
class G, that does not contain the true prediction function.

11. In Example 2.2 we saw that the statistical error can be expressed (see (2.20)) as
1 _ 5 . .
[ (0w 1B =) du= B, BB,
0

By Exercise 10 the random vector Z, := \/r_l(En — B,) has asymptotically a multivariate
normal distribution with mean vector 0 and covariance matrix V := ¢*H;' + H'M,H;".
Use Theorem C.2 to show that the expected statistical error is asymptotically

tp . tr(M,H,,")

E@B-B,) H,B-B,) = n— co. (2.54)

n

Plot this large-sample approximation of the expected statistical error and compare it with
the outcome of the statistical error.

We note a subtle technical detail: In general, convergence in distribution does not imply
convergence in L,-norm (see Example C.6), and so here we have implicitly assumed that

d . L .
|IZ,|| — Dist. = ||Z,|| —2, constant := lim,1o E[|Z,,]|.

12. Consider again Example 2.2. The result in (2.53) suggests that EE — B,asn — oo,
where B, is the solution in the class G, given in (2.18). Thus, the large-sample approxim-

ation of the pointwise bias of the learner gff’ (x) = xTﬁ atx =[1,...,u" "7 is
Gp * ~ p—1 2 371 p*
Eg/(x)—g ) =[1,....u" 1B, - [LLu,u",u’] 7, n — oo.
Use Python to reproduce Figure 2.17, which shows the (large-sample) pointwise squared

bias of the learner for p € {1,2,3}. Note how the bias is larger near the endpoints u = 0
and u = 1. Explain why the areas under the curves correspond to the approximation errors.

INVERSE HILBERT
MATRIX

15" 430

1 442



62

Exercises

2501

N}
o
(«)

150

100

pointwise squared bias

W
(e}

Figure 2.17: The large-sample pointwise squared bias of the learner for p = 1,2,3. The
bias is zero for p > 4.

13. For our running Example 2.2 we can use (2.53) to derive a large-sample approximation
of the pointwise variance of the learner g7-(x) = x'8,. In particular, show that for large n
* -1 -1 -1
Cx™H'x x"H, M,H, 'x

Var gr(x) ~ " + - , n— oo. (2.55)

Figure 2.18 shows this (large-sample) variance of the learner for different values of the
predictor u and model index p. Observe that the variance ultimately increases in p and that
it is smaller at # = 1/2 than closer to the endpoints # = 0 or u = 1. Since the bias is also

o
? o
4 ° 4
o)
g
2 3 )
g
©
<
-
o
g 2
=]
g
z
g
1‘
9
s 7
0.05 3
0.5 1 p

0.95

Figure 2.18: The pointwise variance of the learner for various pairs of p and u.

larger near the endpoints, we deduce that the pointwise mean squared error (2.21) is larger
near the endpoints of the interval [0, 1] than near its middle. In other words, the error is
much smaller in the center of the data cloud than near its periphery.



Statistical Learning 63
14. Let h : x — R be a convex function and let X be a random variable. Use the subgradi-
ent definition of convexity to prove Jensen’s inequality: 1= 403
JENSEN’S
Eh(X) > h(EX). (2.56) INEQUALITY
15. Using Jensen’s inequality, show that the Kullback—Leibler divergence between prob-
ability densities f and g is always positive; that is,
X
Eln & >0,
8(X)
where X ~ f.
16. The purpose of this exercise is to prove the following Vapnik—Chernovenkis bound: for VAPNIK—
any finite class G (containing only a finite number |G| of possible functions) and a general CHERNOVENKIS
BOUND

bounded loss function, [ < Loss < u, the expected statistical error is bounded from above

according to:
El(g9) - (8% < (=2 In@IGD (2.57)

\n
Note how this bound conveniently does not depend on the distribution of the training set
7. (which is typically unknown), but only on the complexity (i.e., cardinality) of the class
G. We can break up the proof of (2.57) into the following four parts:

(a) For a general function class G, training set 7, risk function ¢, and training loss {7,
we have, by definition, £(g%) < {(g) and &r(gf_) < {7 (g) for all g € G. Show that

0(g9) — (g% < supltr(g) — €(9) + £r(8%) — £(59),

8€G

where we used the notation sup (supremum) for the least upper bound. Since
Efr-(g) = El(g), we obtain, after taking expectations on both sides of the inequal-
ity above:
El(g]) - £(g%) <E Sug 167 (8) — €(8)I.
I4S
(b) If X 1s a zero-mean random variable taking values in the interval [/, u], then the fol-
lowing Hoeffding’s inequality states that the moment generating function satisfies

2 (u—1)?

E tX <
€ exp( 3

), teR. (2.58)
Prove this result by using the fact that the line segment joining points (/, exp(#/)) and
(u, exp(tu)) bounds the convex function x — exp(zx) for x € [/, u]; that is:

u—x  ox-1

e e + e’ , x€[Lul.
u-—1 u-1
(c) LetZ,,...,Z,be (possibly dependent and non-identically distributed) zero-mean ran-

dom variables with moment generating functions that satisfy E exp(tZ;) < exp(£*n°/2)
for all k and some parameter 7. Use Jensen’s inequality (2.56) to prove that for any

HOEFFDING’ S
INEQUALITY

15" 427



64

Exercises

t> 0,
1 1 m?
EmaxZ, = —-Elnmaxe < —Inn + o
k t k t 2
From this derive that
Eml?XZk <nV2Inn.
Finally, show that this last inequality implies that
E m]flx |Zi] < n+/21n(2n). (2.59)
(d) Returning to the objective of this exercise, denote the elements of G by g, ..., gg

and let Z; = {7 (gr) — €(gx). By part (a) it is sufficient to bound E max; |Z;|. Show that
the {Z;} satisfy the conditions of (¢) with n = (u — I)/+/n. For this you will need to
apply part (b) to the random variable Loss(g(X), Y) — €(g), where (X, Y) is a generic
data point. Now complete the proof of (2.57).

17. Consider the problem in Exercise 16a above. Show that

lr-(g5) — €(g9)] < 2sup 67 () — €] + £r(g9) — L(g%).

8€G

From this, conclude:

Eltr(g9) - €(g9)| < 2E sup 1tr(g) — L(g)!.
g€

The last bound allows us to assess how close the training loss €¢(g§) is to the optimal risk
£(g%) within class G.

18. Show that for the normal linear model ¥ ~ N(Xp, 0*1,,), the maximum likelihood es-
timator of o~ is identical to the method of moments estimator (2.37).

19. Let X ~ Gamma(e, 4). Show that the pdf of Z = 1/X is equal to

pL (Z)—a— 1 e—/l @™

) , z>0.

20. Consider the sequence wg, wy, ..., where wy = g(0) is a non-degenerate initial guess
and w,(0) « w,_1(@)g(t]6), t > 1. We assume that g(7|0) is not the constant function (with
respect to #) and that the maximum likelihood value

8(r18) = maxg(r|6) < 0

exists (is bounded). Let
[, = fg(T|0)W,(0) de.

Show that {/;} is a strictly increasing and bounded sequence. Hence, conclude that its limit
is g(716).



Statistical Learning

65

21. Consider the Bayesian model for 7 = {x,..., x,} with likelihood g(7|u) such that
(X1, X | 1) ~iia N(u, 1) and prior pdf g(u) such that g ~ N(v, 1) for some hyperpara-
meter v. Define a sequence of densities w,(u),t > 2 via w,(u) < w,_1(u) g(t|w), start-
ing with w(u) = g(u). Let a, and b, denote the mean and precision* of u under the
posterior g,(u|7) « g(t|w)w,(u). Show that g,(u|7) is a normal density with precision
b; = b;_1 +n, by = 1 and mean a, = (1 — y,)a,_1 + v:X,, ap = v, where y, := n/(b,_, + n).
Hence, deduce that g,(u | 7) converges to a degenerate density with a point-mass at Xx,,.

22. Consider again Example 2.8, where we have a normal model with improper prior
2(0) = g(u, 0%) o 1/0%. Show that the prior predictive pdf is an improper density g(x) « 1,
but that the posterior predictive density is

X—Xn N
Deduce that m tn—l .

23. Assuming that Xy,..., X “~d f, show that (2.48) holds and that £; = —nEIn f(X).

24. Suppose that 7 = {xi,...,x,} are observations of iid continuous and strictly positive
random variables, and that there are two possible models for their pdf. The first model
p=1lis

g(x16,p = 1) = fexp (~6x)

and the second p = 2 is

20\ x>
g(x|0,p=2)= (—) exp (——)
b4 2

For both models, assume that the prior for 6 is a gamma density

t

_ b _
8(9)—r(t)9 exp (—b0),

with the same hyperparameters b and ¢. Find a formula for the Bayes factor, g(t|p =
1)/g(t| p = 2), for comparing these models.

25. Suppose that we have a total of m possible models with prior probabilities g(p), p =
1,...,m. Show that the posterior probability of model g(p | 7) can be expressed in terms of
all the p(p — 1) Bayes factors:

-1
g(P—l|T)—[1+Z§((‘; )lei] .

J#EL

4The precision is the reciprocal of the variance.



66 Exercises

26. Given the data T = {xi,...,x,}, suppose that we use the likelihood (X |6) ~ N(u, o?)
with parameter 6 = (u, 0*)™ and wish to compare the following two nested models.

2

(a) Model p = 1, where o~ = 0'(2) is known and this is incorporated via the prior

_ (.U*J'())z

e 22 X8(0F— 0'(2)).

1
Olp=1) = 2 =1 21p=1)=
g@lp=1)=guloc’,p=1glc"p=1) N

(b) Model p =2, where both mean and variance are unknown with prior

(u=xg)? bt(O_Z)—t—le—b/o-z
e_ 202 X

V2no I'(7)

g@0|p=2)=gulo?)g(c?) =

Show that the prior g(@|p = 1) can be viewed as the limit of the prior g(6|p = 2) when
t — oo and b = toj. Hence, conclude that

grlp=1) = lim g(r|p =2)

2
b=toy;

and use this result to calculate B, |,. Check that the formula for B, agrees with the Savage—
Dickey density ratio:
gxlp=1) _glo*=0o5l7)

grlp=2) g(o? = o?

where g(0?| 7) and g(o?) are the posterior and prior, respectively, under model p = 2.



CHAPTER 3

MONTE CARLO METHODS

Many algorithms in machine learning and data science make use of Monte Carlo
techniques. This chapter gives an introduction to the three main uses of Monte Carlo
simulation: to (1) simulate random objects and processes in order to observe their beha-
vior, (2) estimate numerical quantities by repeated sampling, and (3) solve complicated
optimization problems through randomized algorithms.

3.1 Introduction

Briefly put, Monte Carlo simulation is the generation of random data by means of a com-
puter. These data could arise from simple models, such as those described in Chapter 2,
or from very complicated models describing real-life systems, such as the positions of
vehicles on a complex road network, or the evolution of security prices in the stock mar-
ket. In many cases, Monte Carlo simulation simply involves random sampling from certain
probability distributions. The idea is to repeat the random experiment that is described by
the model many times to obtain a large quantity of data that can be used to answer questions
about the model. The three main uses of Monte Carlo simulation are:

Sampling. Here the objective is to gather information about a random object by observing
many realizations of it. For instance, this could be a random process that mimics the
behavior of some real-life system such as a production line or telecommunications
network. Another usage is found in Bayesian statistics, where Markov chains are
often used to sample from a posterior distribution.

Estimation. In this case the emphasis is on estimating certain numerical quantities related
to a simulation model. An example is the evaluation of multidimensional integrals
via Monte Carlo techniques. This is achieved by writing the integral as the expecta-
tion of a random variable, which is then approximated by the sample mean. Appeal-
ing to the Law of Large Numbers guarantees that this approximation will eventually
converge when the sample size becomes large.

Optimization. Monte Carlo simulation is a powerful tool for the optimization of complic-
ated objective functions. In many applications these functions are deterministic and

67

MonNTE CARLO
SIMULATION

= 446



68

Monte Carlo Sampling

RANDOM NUMBER
GENERATOR

randomness is introduced artificially in order to more efficiently search the domain of
the objective function. Monte Carlo techniques are also used to optimize noisy func-
tions, where the function itself is random; for example, when the objective function
is the output of a Monte Carlo simulation.

The Monte Carlo method dramatically changed the way in which statistics is used in
today’s analysis of data. The ever-increasing complexity of data requires radically different
statistical models and analysis techniques from those that were used 20 to 100 years ago.
By using Monte Carlo techniques, the data analyst is no longer restricted to using basic
(and often inappropriate) models to describe data. Now, any probabilistic model that can
be simulated on a computer can serve as the basis for statistical analysis. This Monte Carlo
revolution has had an impact on both Bayesian and frequentist statistics. In particular, in
frequentist statistics, Monte Carlo methods are often referred to as resampling techniques.
An important example is the well-known bootstrap method [37], where statistical quantit-
ies such as confidence intervals and P-values for statistical tests can simply be determined
by simulation without the need of a sophisticated analysis of the underlying probability
distributions; see, for example, [69] for basic applications. The impact on Bayesian statist-
ics has been even more profound, through the use of Markov chain Monte Carlo (MCMC)
techniques [87, 48]. MCMC samplers construct a Markov process which converges in dis-
tribution to a desired (often high-dimensional) density. This convergence in distribution
justifies using a finite run of the Markov process as an approximate random realization
from the target density. The MCMC approach has rapidly gained popularity as a versat-
ile heuristic approximation, partly due to its simple computer implementation and inbuilt
mechanism to tradeoff between computational cost and accuracy; namely, the longer one
runs the Markov process, the better the approximation. Nowadays, MCMC methods are
indispensable for analyzing posterior distributions for inference and model selection; see
also [50, 99].

The following three sections elaborate on these three uses of Monte Carlo simulation
1n turn.

3.2 Monte Carlo Sampling

In this section we describe a variety of Monte Carlo sampling methods, from the building
block of simulating uniform random numbers to MCMC samplers.

3.2.1 Generating Random Numbers

At the heart of any Monte Carlo method is a random number generator: a procedure that
produces a stream of uniform random numbers on the interval (0,1). Since such numbers
are usually produced via deterministic algorithms, they are not truly random. However, for
most applications all that is required is that such pseudo-random numbers are statistically
indistinguishable from genuine random numbers U, U, ... that are uniformly distributed
on the interval (0,1) and are independent of each other; we write Uj, U, ... ~;q U(O, 1).
For example, in Python the rand method of the numpy . random module is widely used for
this purpose.



Monte Carlo Methods 69
Most random number generators at present are based on linear recurrence relations.
One of the most important random number generators is the multiple-recursive generator MULTIPLE-
(MRG) of order k, which generates a sequence of integers Xy, Xj.1,. .. via the linear recur- RECURSIVE
GENERATOR
rence
Xf = (alXt_l +"'+asz_k) mOd m, t:k,k+ 1,... (3.1)
for some modulus m and multipliers {a;,i = 1, ..., k}. Here “mod” refers to the modulo op- MODULUS
eration: n mod m is the remainder when n is divided by m. The recurrence is initialized by MULTIPLIERS
specifying k “seeds”, Xy, ..., Xi—1. To yield fast algorithms, all but a few of the multipliers
should be 0. When m is a large integer, one can obtain a stream of pseudo-random numbers
Ui, Uis1, . .. between 0 and 1 from the sequence Xi, Xi.1, ..., simply by setting U, = X;/m.
It is also possible to set a small modulus, in particular m = 2. The output function for such
modulo 2 generators is then typically of the form
MODULO 2
GENERATORS

w
Ul = Z th+i—12_i
i=1

for some w < k, e.g., w = 32 or 64. Examples of modulo 2 generators are the feedback shift
register generators, the most popular of which are the Mersenne twisters; see, for example,
[79] and [83]. MRGs with excellent statistical properties can be implemented efficiently
by combining several simpler MRGs and carefully choosing their respective moduli and
multipliers. One of the most successful is L’Ecuyer’s MRG32k3a generator; see [77]. From
now on, we assume that the reader has a sound random number generator available.

3.2.2 Simulating Random Variables

Simulating a random variable X from an arbitrary (that is, not necessarily uniform) distri-
bution invariably involves the following two steps:

1. Simulate uniform random numbers Uy, ..., U, on (0,1) for some k = 1,2, .. ..

2. Return X = g(U,, ..., U;), where g is some real-valued function.

The construction of suitable functions g is as much of an art as a science. Many
simulation methods may be found, for example, in [71] and the accompanying website
www.montecarlohandbook.org. Two of the most useful general procedures for gen-
erating random variables are the inverse-transform method and the acceptance—rejection
method. Before we discuss these, we show one possible way to simulate standard normal
random variables. In Python we can generate standard normal random variables via the
randn method of the numpy . random module.

B Example 3.1 (Simulating Standard Normal Random Variables) If X and Y are in-
dependent standard normally distributed random variables (that is, X, Y ~;iq N(O, 1)), then
their joint pdf is

1
flx,y) = ge‘%“‘”yz), (x,y) € R?,

which is a radially symmetric function. In Example C.2 we see that, in polar coordin-
ates, the angle © that the random vector [X, Y]™ makes with the positive x-axis is U(0, 27)

FEEDBACK SHIFT
REGISTER

MERSENNE
TWISTERS

15 433


www.montecarlohandbook.org

70

Monte Carlo Sampling

=72

CHOLESKY
DECOMPOSITION

I 368

= 46

distributed (as would be expected from the radial symmetry) and the radius R has pdf
fr(r) = re "/ 2 r> 0. Moreover, R and ® are independent. We will see shortly, in Ex-
ample 3.4, that R has the same distribution as V-2In U with U ~ U(0, 1). So, to sim-
ulate X, Y ~;q N(O, 1), the idea is to first simulate R and ® independently and then return
X = Rcos(®) and Y = Rsin(®) as a pair of independent standard normal random variables.
This leads to the Box—Muller approach for generating standard normal random variables.

Algorithm 3.2.1: Normal Random Variable Simulation: Box—Muller Approach
output: Independent standard normal random variables X and Y.

1 Simulate two independent random variables, U, and U,, from U(O0, 1).

2 X « (=2InU)"? cos(2nU,)

3 Y « (=2InU))"?sin2nU,)

4 return X, Y

Once a standard normal number generator is available, simulation from any n-
dimensional normal distribution N(u, X) is relatively straightforward. The first step is to
find an n X n matrix B that decomposes X into the matrix product BB™. In fact there exist
many such decompositions. One of the more important ones is the Cholesky decomposition,
which is a special case of the LU decomposition; see Section A.6.1 for more information
on such decompositions. In Python, the function cholesky of numpy.1linalg can be used
to produce such a matrix B.

Once the Cholesky factorization is determined, it is easy to simulate X ~ N(u, X) as,
by definition, it is the affine transformation g + BZ of an n-dimensional standard normal
random vector.

Algorithm 3.2.2: Normal Random Vector Simulation
input: g, X
output: X ~ N(u, X)
1 Determine the Cholesky factorization £ = BB'.
2 Simulate Z = [Z,,...,Z,]" by drawing Zi, ..., Z, ~iia N(O, 1).
3 X—u+BZ
4 return X

B Example 3.2 (Simulating from a Bivariate Normal Distribution) The Python code
below draws N = 1000 iid samples from the two bivariate (n = 2) normal pdfs in Fig-
ure 2.13. The resulting point clouds are given in Figure 3.1.

bvnormal . py

import numpy as np
from numpy.random import randn
import matplotlib.pyplot as plt

=
I}

0
.0 #change to 0.8 for other plot
= np.array([[1l, r], [r, 111D



https://github.com/DSML-book/Programs/blob/master/Chapter3/bvnormal.py

Monte Carlo Methods 71
B = np.linalg.cholesky(Sigma)
X = B @ randn(2,N)
plt.scatter([x[0,:]1],[x[1,:]], alpha =0.4, s = 4)
3 3]
2 A < 2 S
':::‘"'Q * N L ‘.:,;‘.’q
1 E s o%, § ‘.{'0;,. i e s .“.
e A, L Rorias
01 A Saley
LB I 01 "k'..'%&
§° Fenen 8 a%
-1 1 . "{":2? ’ -1 .5"(:'?"'
_2 - «® _2 i ""'. > L nd
_3 - _3 u
-2 0 2 A 0 2
Figure 3.1: 1000 realizations of bivariate normal distributions with means zero, variances
1, and correlation coeflicients O (left) and 0.8 (right).
|
In some cases, the covariance matrix X has special structure which can be exploited to
create even faster generation algorithms, as illustrated in the following example.
B Example 3.3 (Simulating Normal Vectors in O(n?) Time) Suppose that the random
vector X = [Xy,...,X,]" represents the values at times ty + k6, k = 0,...,n — 1 of a zero-
mean Gaussian process (X(t),t > 0) that is weakly stationary, meaning that Cov(X(s), X(t)) = 238
depends only on #—s. Then clearly the covariance matrix of X, say A, is a symmetric Toep-
litz matrix. Suppose for simplicity that Var X(#) = 1. Then the covariance matrix is in fact = 379
a correlation matrix, and will have the following structure:
[ 1 aq R ¢ ) Cln_l-
a L. Qap-2
A, =
(Zn_2 t- . I . al
(A1 App 0 ar 1
Using the Levinson—-Durbin algorithm we can compute a lower diagonal matrix L, and
a diagonal matrix D, in O(n?) time such that L, A, L] = D,; see Theorem A.14. If we = 383

simulate Z, ~ N(0,I,,), then the solution X of the linear system:
L,X=D/2Z,

has the desired distribution N(0, A,). The linear system is solved in O(n?) time via forward
substitution. [ |



72

Monte Carlo Sampling

\/,

«

2

3.2.2.1 Inverse-Transform Method

Let X be a random variable with cumulative distribution function (cdf) F. Let F~! denote
the inverse' of F and U ~ U(0, 1). Then,

PIF'(U) < x] = P[U < F(x)] = F(x). (3.2)

This leads to the following method to simulate a random variable X with cdf F:

Algorithm 3.2.3: Inverse-Transform Method

input: Cumulative distribution function F.

output: Random variable X distributed according to F.
1 Generate U from U(0, 1).
2 X « FI(U)
3 return X

The inverse-transform method works both for continuous and discrete distribu-
tions. After importing numpy as np, simulating numbers O, ...,k — 1 according to
probabilities py, ..., pr—1 can be done via np.min(np.where(np.cumsum(p) >
np.random.rand())), where p is the vector of the probabilities.

B Example 3.4 (Example 3.1 (cont.)) One remaining issue in Example 3.1 was how to
simulate the radius R when we only know its density fz(r) = r e /2 r > 0. We can use the
inverse-transform method for this, but first we need to determine its cdf. The cdf of R is,
by integration of the pdf,

Fr(r)=1-¢12", r>0,

and its inverse is found by solving u = Fg(r) in terms of r, giving

Fl(u) = -2In(1 —u), wue(0,1).

Thus R has the same distribution as V-2 1In(1 — U), with U ~ U(0, 1). Since 1 — U also has
a U(0, 1) distribution, R has also the same distribution as V-=2In U. [ |

3.2.2.2 Acceptance-Rejection Method

The acceptance—rejection method is used to sample from a “difficult” probability density
function (pdf) f(x) by generating instead from an “easy” pdf g(x) satisfying f(x) < C g(x)
for some constant C > 1 (for example, via the inverse-transform method), and then ac-
cepting or rejecting the drawn sample with a certain probability. Algorithm 3.2.4 gives the
pseudo-code.

The idea of the algorithm is to generate uniformly a point (X, ¥) under the graph of the
function Cg, by first drawing X ~ g and then Y ~ U(0, Cg(X)). If this point lies under the
graph of f, then we accept X as a sample from f; otherwise, we try again. The efficiency
of the acceptance-rejection method is usually expressed in terms of the probability of
acceptance, which is 1/C.

'Every cdf has a unique inverse function defined by F~'(«) = inf{x : F(x) > u}. If, for each u, the
equation F(x) = u has a unique solution x, this definition coincides with the usual interpretation of the
inverse function.



Monte Carlo Methods 73
Algorithm 3.2.4: Acceptance—Rejection Method
input: Pdf g and constant C such that Cg(x) > f(x) for all x.
output: Random variable X distributed according to pdf f.
1 found « false
2 while not found do
3 Generate X from g.
4 Generate U from U(0, 1) independently of X.
5 Y <« UCg(X)
6 if Y < f(X) then found « true
7 return X
B Example 3.5 (Simulating Gamma Random Variables) Simulating random variables
from a Gamma(a, A) distribution is generally done via the acceptance—rejection method.
Consider, for example, the Gamma distribution with @ = 1.3 and A = 5.6. Its pdf, 5" 425
/lozxaf—l e—/lx
= = > 09
0= =
where I is the gamma function I['(@) := fooo e*x*!dx, @ > 0, is depicted by the blue solid
curve in Figure 3.2.
5 -
\ —f)
4 --Cg(x)
1.5 2
x
Figure 3.2: The pdf g of the Exp(4) distribution multiplied by C = 1.2 dominates the pdf f
of the Gamma(1.3, 5.6) distribution.
This pdf happens to lie completely under the graph of Cg(x), where C = 1.2 and
g(x) = 4exp(—4x),x > 0 is the pdf of the exponential distribution Exp(4). Hence, we
can simulate from this particular Gamma distribution by accepting or rejecting a sample
from the Exp(4) distribution according to Step 6 of Algorithm 3.2.4. Simulating from the 15 425

Exp(4) distribution can be done via the inverse-transform method: simulate U ~ U(0, 1)
and return X = —In(U)/4. The following Python code implements Algorithm 3.2.4 for this
example.



74 Monte Carlo Sampling
accrejgamma.py
from math import exp, gamma, log
from numpy.random import rand
alpha = 1.3
lam = 5.6
f = lambda x: lam**alpha * x**(alpha-1) * exp(-lam*x)/gamma(alpha)
g = lambda x: 4*exp(-4%x)
c=1.2
found = False
while not found:
x = - log(rand()) /4
if C*g(x)*rand() <= f(x):
found = True
print (x)
|
3.2.3 Simulating Random Vectors and Processes
Techniques for generating random vectors and processes are as diverse as the class of
random processes themselves; see, for example, [71]. We highlight a few general scenarios.
When X, ..., X, are independent random variables with pdfs f;, i = 1,...,n, so that
5" 429 their joint pdf is f(x) = fi(x1)--- fu(x,), the random vector X = [X;,...,X,]" can be
simply simulated by drawing each component X; ~ f; individually — for example, via the
inverse-transform method or acceptance-rejection.
For dependent components X1, . .., X,,, we can, as a consequence of the product rule of
= 431 probability, represent the joint pdf f(x) as
J) = flxr, ..o x) = filxa) ol xi) - fulxn [ X1, 000y X)), (3.3)
where fi(x;) is the marginal pdf of X; and fi(x;|x1, ..., xx—1) is the conditional pdf of X
given X| = x1, X, = x2,..., Xi1 = X1 Provided the conditional pdfs are known, one can
generate X by first generating X, then, given X; = x;, generate X, from f>(x, | x;), and so
on, until generating X,, from f,(x, | x1, ..., X,—1).
The latter method is particularly applicable for generating Markov chains. Recall from
15" 451 Section C.10 that a Markov chain is a stochastic process {X;,t = 0, 1,2, ...} that satisfies

MARKOV CHAIN

the Markov property; meaning that for all 7 and s the conditional distribution of X,, given
X, u < t, 1s the same as that of X,,, given only X,. As a result, each conditional density
Ji(x:1x1,...,x-1) can be written as a one-step transition density q,(x;|x;-1); that is, the
probability density to go from state x,_; to state x, in one step. In many cases of interest
the chain is time-homogeneous, meaning that the transition density g, does not depend on
t. Such Markov chains can be generated sequentially, as given in Algorithm 3.2.5.


https://github.com/DSML-book/Programs/blob/master/Chapter3/accrejgamma.py

Monte Carlo Methods

75

Algorithm 3.2.5: Simulate a Markov Chain
input: Number of steps N, initial pdf f, transition density q.
1 Draw X, from the initial pdf f;.
2 forr=1toNdo
3 L Draw X, from the distribution corresponding to the density g(- | X;_;)

4 return X, ..., Xy

B Example 3.6 (Markov Chain Simulation) For time-homogeneous Markov chains
with a discrete state space, we can visualize the one-step transitions by means of a trans-
ition graph, where arrows indicate possible transitions between states and the labels de-
scribe the corresponding probabilities. Figure 3.3 shows (on the left) the transition graph
of the Markov chain {X,,7 = 0, 1,2, ...} with state space {1, 2, 3,4} and one-step transition

matrix
0 02 05 03
pP- 05 0 05 O
103 07 O 0

01 0 0 09

[ ; | N L R
) | | - 1! [
Foy P | IR | ¥
P Teieeey) welei |
I ‘h“\“\‘” b Vo | |
‘ﬂ‘“‘\ Pt by ‘\““\‘ /! I

I \““y‘\“\f\ AT T “\ I
oo \w‘\‘\OQw. I “““H‘ | | I
Lo IR [T I i
I [ b o h I

A A | | w

| | b ol [ \J | I | |
0 20 40 60 80 100
t

Figure 3.3: The transition graph (left) and a typical path (right) of the Markov chain.

In the same figure (on the right) a typical outcome (path) of the Markov chain is
shown. The path was simulated using the Python program below. In this implementation
the Markov chain always starts in state 1. We will revisit Markov chains, and in particular
Markov chains with continuous state spaces, in Section 3.2.5.

MCsim.py

import numpy as np
import matplotlib.pyplot as plt

n = 101

P = np.array([[0, 0.2, 0.5, 0.3],
[6.5, 0, 0.5, 0],
[6.3, 0.7, 0, 0],
[06.1, O, 0, 0.9]1])

X = np.array(np.ones(n, dtype=int))
x[0] =0

TRANSITION
GRAPH


https://github.com/DSML-book/Programs/blob/master/Chapter3/MCsim.py

76

Monte Carlo Sampling

RESAMPLING

=11

for t in range(®,n-1):
x[t+1] = np.min(np.where(np.cumsum(P[x[t],:]) >
np.random.rand()))
X =x + 1 #add 1 to all elements of the vector x
plt.plot(np.array(range(®,n)),x, 'o')
plt.plot(np.array(range(®,n)),x, '--')
plt.show ()

3.2.4 Resampling

The idea behind resampling is very simple: an iid sample 7 := {xi,..., x,} from some
unknown cdf F represents our best knowledge of F' if we make no further a priori as-
sumptions about it. If it is not possible to simulate more samples from F, the best way to
“repeat” the experiment is to resample from the original data by drawing from the empir-
ical cdf F,; see (1.2). That is, we draw each x; with equal probability and repeat this N
times, according to Algorithm 3.2.6 below. As we draw here “with replacement”, multiple
instances of the original data points may occur in the resampled data.

Algorithm 3.2.6: Sampling from an Empirical Cdf.
input: Original iid sample x, ..., x, and sample size N.
output: Iid sample X7, ..., X}, from the empirical cdf.

1 fortr=1toNdo

2 Draw U ~ U(0, 1)
3 Set I « [nU]

4 Set X; < x;

5 return X, ..., X}

In Step 3, [nU] returns the ceiling of nU; that is, it is the smallest integer larger than
or equal to nU. Consequently, / is drawn uniformly at random from the set of indices
{1,...,n}.

By sampling from the empirical cdf we can thus (approximately) repeat the experiment
that gave us the original data as many times as we like. This is useful if we want to assess
the properties of certain statistics obtained from the data. For example, suppose that the
original data T gave the statistic #(7). By resampling we can gain information about the
distribution of the corresponding random variable #(7).

B Example 3.7 (Quotient of Uniforms) Let Uy,...,U,, Vy,...,V, beiid U0, 1) random
variables and define X; = U;/V;,i = 1,...,n. Suppose we wish to investigate the distribu-
tion of the sample median X and sample mean X of the (random) data 7 := {X;,...,X,}.
Since we know the model for 7 exactly, we can generate a large number, N say, of inde-
pendent copies of it, and for each of these copies evaluate the sample medians Xi,.... Xy
and sample means X, ..., Xy. For n = 100 and N = 1000 the empirical cdfs might look
like the left and right curves in Figure 3.4, respectively. Contrary to what you might have
expected, the distributions of the sample median and sample mean do not match at all. The
sample median is quite concentrated around 1, whereas the distribution of the sample mean
is much more spread out.



Monte Carlo Methods

77

x

Figure 3.4: Empirical cdfs of the medians of the resampled data (left curve) and sample
means (right curve) of the resampled data.

Instead of sampling completely new data, we could also reuse the original data by
resamphng them via Algorithm 3.2.6. This gives independent copies Xj,..., i* and
X, 1+..., Xy, for which we can again plot the empirical cdf. The results will be similar
to the previous case. In fact, in Figure 3.4 the cdf of the resampled sample medians and
sample means are plotted. The corresponding Python code is given below. The essential
point of this example is that resampling of data can greatly add to the understanding of the
probabilistic properties of certain measurements on the data, even if the underlying model
is not known. See Exercise 12 for a further investigation of this example.

quotunif.py

import numpy as np

from numpy.random import rand, choice

import matplotlib.pyplot as plt

from statsmodels.distributions.empirical_distribution import ECDF

n = 100

N = 1000

X = rand(n)/rand(n) # data

med = np.zeros(N)

ave = np.zeros(N)

for i in range(®,N):
s = choice(x, n, replace=True) # resampled data
med[i] = np.median(s)
ave[i] = np.mean(s)

med_cdf = ECDF (med)

ave_cdf = ECDF (ave)
plt.plot(med_cdf.x, med_cdf.y)
plt.plot(ave_cdf.x, ave_cdf.y)
plt.show ()

= 117


https://github.com/DSML-book/Programs/blob/master/Chapter3/quotunif.py

78

Monte Carlo Sampling

MARKOV CHAIN
MonNTE CARLO

TARGET

b 453

BURN-IN PERIOD

=72

PROPOSAL

ACCEPTANCE
PROBABILITY

3.2.5 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a Monte Carlo sampling technique for (approxim-
ately) generating samples from an arbitrary distribution — often referred to as the target
distribution. The basic idea is to run a Markov chain long enough such that its limiting
distribution is close to the target distribution. Often such a Markov chain is constructed to
be reversible, so that the detailed balance equations (C.43) can be used. Depending on the
starting position of the Markov chain, the initial random variables in the Markov chain may
have a distribution that is significantly different from the target (limiting) distribution. The
random variables that are generated during this burn-in period are often discarded. The
remaining random variables form an approximate and dependent sample from the target
distribution.

In the next two sections we discuss two popular MCMC samplers: the Metropolis—
Hastings sampler and the Gibbs sampler.

3.2.5.1 Metropolis—Hastings Sampler

The Metropolis—Hastings sampler [87] is similar to the acceptance—rejection method in
that it simulates a trial state, which is then accepted or rejected according to some random
mechanism. Specifically, suppose we wish to sample from a target pdf f(x), where x takes
values in some d-dimensional set. The aim is to construct a Markov chain {X;,7 =0, 1,.. .}
in such a way that its limiting pdf is f. Suppose the Markov chain is in state x at time 7. A
transition of the Markov chain from state x is carried out in two phases. First a proposal
state Y is drawn from a transition density ¢(- | x). This state is accepted as the new state,
with acceptance probability

f®)q(x1y) 1}, G

oty = min{f(x) q(ylx)’

or rejected otherwise. In the latter case the chain remains in state x. The algorithm just
described can be summarized as follows.

Algorithm 3.2.7: Metropolis—Hastings Sampler
input: Initial state X, sample size N, target pdf f(x), proposal function g(y | x).
output: X, ..., Xy (dependent), approximately distributed according to f(x).
1 fortr=0toN-1do
2 Draw Y ~ g(y | X}) // draw a proposal
3 a— a(X,Y) // acceptance probability as in (3.4)
4 Draw U ~ U(0, 1)
5
6

if U<athen X, «Y
else X, « X,

7 return X, ..., Xy

The fact that the limiting distribution of the Metropolis—Hastings Markov chain is equal
to the target distribution (under general conditions) is a consequence of the following result.



Monte Carlo Methods

79

Theorem 3.1: Local Balance for the Metropolis—Hastings Sampler

The transition density of the Metropolis—Hastings Markov chain satisfies the de-
tailed balance equations.

Proof: We prove the theorem for the discrete case only. Because a transition of the
Metropolis—Hastings Markov chain consists of two steps, the one-step transition probabil-
ity to go from x to y is not g(y | x) but

~ gy x) a(x,y), if y # x,
= 3.5
w1 {1 — 24z X alx,2), ify=x G-
We thus need to show that
f)qlylx)= f(y)q(x|y) forallx,y. (3.6)

With the acceptance probability as in (3.4), we need to check (3.6) for three cases:

(@) x =y,
(b) x #yand f(y)g(x|y) < f(x)q(y|x), and
(c) x #yand f(y)g(x|y) > f(x)q(y|x).

Case (a) holds trivially. For case (b), a(x,y) = f(y)g(x|y)/(f(x)g(y |x)) and a(y,x) = 1.
Consequently,

q(y1x) = f()g(x|y)/f(x) and q(x|y) = q(x]|y),

so that (3.6) holds. Similarly, for case (c) we have a(x,y) = 1 and a(y,x) = f(x)q(y|x)/
(f(y)g(x1y)). It follows that,

qylx)=qylx) and g(x|y) = f(x)q(y|x)/f),
so that (3.6) holds again. O

Thus if the Metropolis—Hastings Markov chain is ergodic, then its limiting pdf is f(x).
A fortunate property of the algorithm, which is important in many applications, is that in
order to evaluate the acceptance probability a(x,y) in (3.4), one only needs to know the
target pdf f(x) up to a constant; that is f(x) = c?(x) for some known function 7(x) but
unknown constant c.

The efficiency of the algorithm depends of course on the choice of the proposal trans-
ition density g(y|x). Ideally, we would like g(y | x) to be “close” to the target f(y), irre-
spective of x. We discuss two common approaches.

1. Choose the proposal transition density g(y|x) independent of x; that is, g(y|x) =
g(y) for some pdf g(y). An MCMC sampler of this type is called an independence
sampler. The acceptance probability is thus

f®)5&) 1}‘

o(%,y) = min {f(x) gy’

15 453

15 452

INDEPENDENCE
SAMPLER



80

Monte Carlo Sampling

RANDOM WALK
SAMPLER

2. If the proposal transition density is symmetric (that is, g(y |x) = g(x|y)), then the
acceptance probability has the simple form

) (3.7
f(x)
and the MCMC algorithm is called a random walk sampler. A typical example is
when, for a given current state x, the proposal state Y is of the form Y = x + Z,
where Z is generated from some spherically symmetric distribution, such as N(0, I).

a(x,y) = min{M 1},

We now give an example illustrating the second approach.

B Example 3.8 (Random Walk Sampler) Consider the two-dimensional pdf

f(x1,x) = ce i VAR (sin (2 N x%) + 1) , 2m<x <2m 2w <xy,<2m (3.8)

where ¢ is an unknown normalization constant. The graph of this pdf (unnormalized) is
depicted in the left panel of Figure 3.5.

Figure 3.5: Left panel: the two-dimensional target pdf. Right panel: points from the random
walk sampler are approximately distributed according to the target pdf.

The following Python program implements a random walk sampler to (approximately)
draw N = 10* dependent samples from the pdf f. At each step, given a current state x,
a proposal Y is drawn from the N(x, I) distribution. That is, ¥ = x + Z, with Z bivariate
standard normal. We see in the right panel of Figure 3.5 that the sampler works correctly.
The starting point for the Markov chain is chosen as (0, 0). Note that the normalization
constant c¢ is never required to be specified in the program.

import numpy as np

import matplotlib.pyplot as plt

from numpy import pi, exp, sqrt, sin
from numpy.random import rand, randn



https://github.com/DSML-book/Programs/blob/master/Chapter3/rwsamp.py

Monte Carlo Methods

81

10000
lambda x: -2*pi < x
lambda x: x < 2%pi
lambda x1, x2: exp(-sqrt(x1**2+x2%%2)/4)%*(
sin(2*sqrt (x1**2+x2**2))+1)*a(x1l)*b(xl)*a(x2)*b(x2)

H T 0 =

XX = np.zeros((N,2))
X = np.zeros((1,2))
for i in range(1,N):
y = X + randn(1l,2)
alpha = np.amin((£Cy[0][0],y[01[1])/£(x[0]1[0],x[0]1[1]1),1))
r = rand() < alpha
X = r*y + (1-r)*x
xx[i,:] = x

plt.scatter(xx[:,0], xx[:,1], alpha =0.4,s =2)
plt.axis('equal')
plt.show ()

3.2.5.2 Gibbs Sampler

The Gibbs sampler [48] uses a somewhat different methodology from the Metropolis—
Hastings algorithm and is particularly useful for generating n-dimensional random vectors.
The key idea of the Gibbs sampler is to update the components of the random vector
one at a time, by sampling them from conditional pdfs. Thus, Gibbs sampling can be
advantageous if it is easier to sample from the conditional distributions than from the joint
distribution.

Specifically, suppose that we wish to sample a random vector X = [Xj,...,X,]" ac-
cording to a target pdf f(x). Let f(x;|xi,...,Xi_1, Xi+1,...,X,) represent the conditional
pdf2 of the i-th component, X;, given the other components xi, ..., X;,_1, Xj+1,...,X,. The

Gibbs sampling algorithm is as follows.

Algorithm 3.2.8: Gibbs Sampler

input: Initial point X, sample size N, and target pdf f.
output: X, ..., Xy approximately distributed according to f.
1 fortr=0toN—-1do

2 Draw Y, from the conditional pdf f(y; | X;2,...,X..).

3 fori =2tondo

4 L Draw Y; from the conditional pdf f(y;|Y1,..., Yic1, Xpiv1s- - » Xin)-
5 Xt+1 «Y

6 return X,..., Xy

There exist many variants of the Gibbs sampler, depending on the steps required to
update X, to X,;; — called the cycle of the Gibbs algorithm. In the algorithm above, the

’In this section we employ a Bayesian notation style, using the same letter f for different (conditional)
densities.

GIBBS SAMPLER

CYCLE



82

Monte Carlo Sampling

SYSTEMATIC
GIBBS SAMPLER

RANDOM-ORDER
GIBBS SAMPLER

=115

RANDOM (GIBBS
SAMPLER

REVERSIBLE
GIBBS SAMPLER

1= 452

cycle consists of Steps 2-5, in which the components are updated in a fixed order 1 — 2 —
-+ — n. For this reason Algorithm 3.2.8 is also called the systematic Gibbs sampler.

In the random-order Gibbs sampler, the order in which the components are updated
in each cycle is a random permutation of {1, ..., n} (see Exercise 9). Other modifications
are to update the components in blocks (i.e., several at the same time), or to update only
a random selection of components. The variant where in each cycle only a single random
component is updated is called the random Gibbs sampler. In the reversible Gibbs sampler
a cycle consists of the coordinate-wise updatingl - 2 - --- > n-1-n—-n-1—-

- — 2 — 1. In all cases, except for the systematic Gibbs sampler, the resulting Markov
chain {X,,r = 1,2, ...} is reversible and hence its limiting distribution is precisely f(x).

Unfortunately, the systematic Gibbs Markov chain is not reversible and so the detailed
balance equations are not satisfied. However, a similar result holds, due to Hammersley and
Clifford, under the so-called positivity condition: if at a point x = (x, ..., x,) all marginal
densities f(x;) > 0,i =1,...,n, then the joint density f(x) > O.

Theorem 3.2: Hammersley—Clifford Balance for the Gibbs Sampler

Let g;_,(y | x) denote the transition density of the systematic Gibbs sampler, and let
gn—1(x|y) be the transition density of the reverse move, in the ordern - n—1 —
-+ — 1. Then, if the positivity condition holds,

J) q1on(y [ X) = fO) gnor (x| y). (3.9)

Proof: For the forward move we have:

Q1-nY %) = fOrlx2, .o x) SO Iy X350 X)) - f Ol Yis v Yuot)s

and for the reverse move:

Gns1(X 1Y) = fX0 Y15 o s YD Kt 1V15 o s Yne2s Xn) - - f(X1 | X2, .00, X)),

Consequently,

QI—m()’lx) — L f()’il)’h---,yi—l,xiﬂ’---’xn)
Qn—>1(x|y) i=1 f(xi|y15'"ayi—la-xi+l$""-xn)

ﬁf()’1,---,}’i,xi+1,---,xn)

i1 SO1s e Yicts Xis o+ v Xn)

SO T O Vis Xivts e o0 X)

FO [Ty f D155 Vit X5 Xn)

FOVTTE F Oy vy Yis Xists e -5 X) _ f)
STV fO1 o yp Xt x) - S

The result follows by rearranging the last identity. The positivity condition ensures that we
do not divide by 0 along the line. O

Intuitively, the long-run proportion of transitions x — y for the “forward move” chain
is equal to the long-run proportion of transitions y — x for the “reverse move” chain.



Monte Carlo Methods

83

To verify that the Markov chain X, X1, ... for the systematic Gibbs sampler indeed has
limiting pdf f(x), we need to check that the global balance equations (C.42) hold. By
integrating (in the continuous case) both sides in (3.9) with respect to x, we see that indeed

f £ qrn(y [ 1) dx = £O).

B Example 3.9 (Gibbs Sampler for the Bayesian Normal Model) Gibbs samplers are
often applied in Bayesian statistics, to sample from the posterior pdf. Consider for instance
the Bayesian normal model

f,o?) =1/0"
(x|, ) ~ N(ul, c*1).

Here the prior for (u,0) is improper. That is, it is not a pdf in itself, but by obstinately
applying Bayes’ formula it does yield a proper posterior pdf. In some sense this prior
conveys the least amount of information about i and 0. Following the same procedure as
in Example 2.8, we find the posterior pdf:

L 2
_12&)@_%0}, (3.10)

2 o2

fu, 0| x) o (0'2)_"/2_1 exp{

Note that u and o* here are the “variables” and x is a fixed data vector. To simulate samples
u and o from (3.10) using the Gibbs sampler, we need the distributions of both (u | o2, x)
and (0% |y, x). To find f(u|o?, x), view the right-hand side of (3.10) as a function of u
only, regarding o2 as a constant. This gives

nt =2 yixi)| _ exp W= 2ux
202 2(0%/n)

)
& exp {—1(" ») } (3.11)

2 o?%/n

f(ﬂle,x)OCeXp{—

This shows that (u| 0%, x) has a normal distribution with mean x and variance o%/n.
Similarly, to find f(o?|u, x), view the right-hand side of (3.10) as a function of o,
regarding u as a constant. This gives

f@? |, x) o ()™ exp {—% D - u)z/(ﬁ} : (3.12)
i=1

showing that (0% |u,x) has an inverse-gamma distribution with parameters n/2 and
S (- 1)?/2. The Gibbs sampler thus involves the repeated simulation of

(o, x) ~N(%, 0?/n) and (07| x) ~ InvGamma[n/Z, Z(x,-— ,1)2/2].
i=1

Simulating X ~ InvGamma(a, A) is achieved by first generating Z ~ Gamma(ea, 1) and
then returning X = 1/Z.

1 452

= 51

IMPROPER PRIOR

15 425



Monte Carlo Sampling

In our parameterization of the Gamma(a, A) distribution, A is the rate parameter.
Many software packages instead use the scale parameter ¢ = 1/1. Be aware of this

(When simulating Gamma random variables.

The Python script below defines a small data set of size n = 10 (which was randomly
simulated from a standard normal distribution), and implements the systematic Gibbs

sampler to simulate from the posterior distribution, using N

gibbsamp.py

= 10° samples.

import numpy as np
import matplotlib.pyplot as plt

1.1890
0.8338

P'e np.array ([[-0.9472,

-0.4056,

0.5401,
-0.4449,

-0.2166,
1.3284,
n=x.size

sample_mean np.mean(x)

sample_var np.var(x)

sig2 np.var(x)

mu=sample_mean

N=10**5
gibbs_sample np.array(np.zeros ((N,
for k in range(N):

2)))

V=np.sum((x-mu)**2) /2
sig2 1/np.random.gamma(n/2, 1/V)
gibbs_sample[k,:]= np.array([mu, sig2])

, 1.3170,
, 0.604411)

mu=sample_mean + np.sqrt(sig2/n)*np.random.randn()

plt.scatter(gibbs_sample[:,0], gibbs_sample[:,1],alpha =0.1,s =1)
plt.plot(np.mean(x), np.var(x), 'wo')
plt.show ()
6,
5,
1.5r
4,
C\lb3V 1
£
2y =
=
0.5

-0.5 1.5 2 -1

-0.5 0

0.5 1

Figure 3.6: Left: approximate draws from the posterior pdf f(u,o?|x) obtained via the

Gibbs sampler. Right: estimate of the posterior pdf f(u | x).


https://github.com/DSML-book/Programs/blob/master/Chapter3/gibbsamp.py

Monte Carlo Methods

85

The left panel of Figure 3.6 shows the (u, 0%) points generated by the Gibbs sampler.
Also shown, via the white circle, is the point (x, s?), where X = 0.3798 is the sample mean
and s* = 0.6810 the sample variance. This posterior point cloud visualizes the considerable
uncertainty in the estimates. By projecting the (u, 0%) points onto the u-axis — that is,
by ignoring the o values — one obtains (approximate) samples from the posterior pdf
of w; that is, f(u|x). The right panel of Figure 3.6 shows a kernel density estimate (see
Section 4.4) of this pdf. The corresponding 0.025 and 0.975 sample quantiles were found
to be —0.2054 and 0.9662, respectively, giving the 95% credible interval (—0.2054, 0.9662)
for u, which contains the true expectation 0. Similarly, an estimated 95% credible interval
for 0% is (0.3218, 2.2485), which contains the true variance 1.

3.3 Monte Carlo Estimation

In this section we describe how Monte Carlo simulation can be used to estimate complic-
ated integrals, probabilities, and expectations. A number of variance reduction techniques
are introduced as well, including the recent cross-entropy method.

3.3.1 Crude Monte Carlo

The most common setting for Monte Carlo estimation is the following: Suppose we wish to
compute the expectation u = EY of some (say continuous) random variable Y with pdf f,
but the integral EY = f yf(y)dy is difficult to evaluate. For example, if Y is a complicated
function of other random variables, it would be difficult to obtain an exact expression for
f(). The idea of crude Monte Carlo — sometimes abbreviated as CMC — is to approx-
imate u by simulating many independent copies Y, ..., Yy of Y and then take their sample
mean Y as an estimator of u. All that is needed is an algorithm to simulate such copies.

By the Law of Large Numbers, Y converges to u as N — oo, provided the expectation
of Y exists. Moreover, by the Central Limit Theorem, Y approximately has a N(u, o%/N)
distribution for large N, provided that the variance o> = VarY < oo. This enables the con-
struction of an approximate (1 — @) confidence interval for u:

- S - S

Y —Ziap2 N Y+ 21ap )
where § is the sample standard deviation of the {Y;} and z, denotes the y-quantile of the
N(0, 1) distribution; see also Section C.13. Instead of specifying the confidence interval,
one often reports only the sample mean and the estimated standard error: S VN, or the
estimated relative error: S /(Y VN). The basic estimation procedure for independent data
is summarized in Algorithm 3.3.1 below.

(3.13)

It is often the case that the output Y is a function of some underlying random vector or
stochastic process; that is, Y = H(X), where H is a real-valued function and X is a random
vector or process. The beauty of Monte Carlo for estimation is that (3.13) holds regardless
of the dimension of X.

5 134

CRUDE MONTE
CARLO

= 446
0 447

CONFIDENCE
INTERVAL

15 457

ESTIMATED
STANDARD ERROR

ESTIMATED
RELATIVE ERROR



86

Monte Carlo Estimation

MontE CARLO
INTEGRATION

= 26
= 29
= 23

Algorithm 3.3.1: Crude Monte Carlo for Independent Data

input: Simulation algorithm for Y ~ f, sample size N, confidence level 1 — a.
output: Point estimate and approximate (1 — @) confidence interval for u = EY.
1 Simulate Yi,..., Yy iic}f.
2 Y %Zfil Y;
38— 3N (Y)Y
4 return Y and the interval (3.13).

B Example 3.10 (Monte Carlo Integration) In Monte Carlo integration, simulation is

used to evaluate complicated integrals. Consider, for example, the integral

U= f f f VIxs + x5 + x3) e T2 qx, d, dxs.
—00 J—00 J-00

Defining ¥ = |X; + X» + X3/2(2n)3/2, with X1, X2, X5 ° N(0, 1), we can write u = EY.

Using the following Python program, with a sample size of N = 10°, we obtained an
estimate Y = 17.031 with an approximate 95% confidence interval (17.017, 17.046).

import numpy as np
from numpy import pi

c = (2*pi)**(3/2)
H = lambda x: c*np.sqrt(np.abs(np.sum(x,axis=1)))
N = 10%*6

z = 1.96

X = np.random.randn(N, 3)

y = H(x)

mY = np.mean(y)

sY = np.std(y)

RE = sY/mY/np.sqrt(N)

print('Estimate = {:3.3f}, CI = ({:3.3£f},{:3.3£f})'.format(
mY, mY*(1-z*RE), mY*(1+z*RE)))

Estimate = 17.031, CI = (17.017,17.046)

B Example 3.11 (Example 2.1 (cont.)) We return to the bias—variance tradeoff in Ex-
ample 2.1. Figure 2.7 gives estimates of the (squared-error) generalization risk (2.5) as
a function of the number of parameters in the model. But how accurate are these estim-
ates? Because we know in this case the exact model for the data, we can use Monte Carlo
simulation to estimate the generalization risk (for a fixed training set) and the expected
generalization risk (averaged over all training sets) precisely. All we need to do is repeat
the data generation, fitting, and validation steps many times and then take averages of the
results. The following Python code repeats 100 times:

1. Simulate the training set of size n = 100.


https://github.com/DSML-book/Programs/blob/master/Chapter3/mcint.py

Monte Carlo Methods 87

2. Fit models up to size k = 8.

3. Estimate the test loss using a test set with the same sample size n = 100.

Figure 3.7 shows that there is some variation in the test losses, due to the randomness in
both the training and test sets. To obtain an accurate estimate of the expected generalization
risk (2.6), take the average of the test losses. We see that for k& < 8 the estimate in Figure 2.7
is close to the true expected generalization risk.

200 ~

175 1

150 -

=

N

U
I

Test loss

=

o

o
I

75 1

50 1

25 A

Number of parameters p

Figure 3.7: Independent estimates of the test loss show some variability.

CMCtestloss.py

import numpy as np, matplotlib.pyplot as plt
from numpy.random import rand, randn
from numpy.linalg import solve

def generate_data(beta, sig, n):
u = rand(n, 1)
y = (u ** np.arange(0®, 4)) @ beta + sig * randn(n, 1)
return u, y

beta = np.array([[10, -140, 400, -250]]1).T
n = 100

sig = 5

betahat = {}

plt. figure(figsize=[6,5])

totMSE = np.zeros(8)

max_p = 8

p_range np.arange(l, max_p + 1, 1)



https://github.com/DSML-book/Programs/blob/master/Chapter3/CMCtestloss.py

88 Monte Carlo Estimation
for N in range(0,100):
u, y = generate_data(beta, sig, n) #training data
X = np.ones((n, 1))
for p in p_range:
if p > 1:
X = np.hstack ((X, u**(p-1)))
betahat[p] = solve(X.T @ X, X.T @ y)
u_test, y_test = generate_data(beta, sig, n) #test data
MSE = []
X_test = np.ones((n, 1))
for p in p_range:
if p > 1:
X_test = np.hstack((X_test, u_test**(p-1)))
y_hat = X_test @ betahat[p] # predictions
MSE.append(np.sum((y_test - y_hat)**2/n))
totMSE = totMSE + np.array(MSE)
plt.plot(p_range, MSE, 'CO0',alpha=0.1)
plt.plot(p_range, totMSE/N, 'r-o0')
plt.xticks(ticks=p_range)
plt.xlabel ('Number of parameters $p$')
plt.ylabel('Test loss')
plt.tight_layout()
plt.savefig('MSErepeatpy.pdf', format="pdf"')
plt.show()
[
3.3.2 Bootstrap Method
The bootstrap method [37] combines CMC estimation with the resampling procedure of
= 76 Section 3.2.4. The idea is as follows: Suppose we wish to estimate a number u via some
estimator Y = H(7"), where 7 := {Xi,...,X,} is an iid sample from some unknown cdf
F. 1t is assumed that Y does not depend on the order of the {X;}. To assess the quality (for
example, accuracy) of the estimator Y, one could draw independent replications 77, ..., 7Ty
of 7 and find sample estimates for quantities such as the variance VarY, the bias EY — p,
and the mean squared error E(Y — u)>. However, it may be too time-consuming or simply
not feasible to obtain such replications. An alternative is to resample the original data.
To reiterate, given an outcome 7 = {xi,...,x,} of 7, we simulate an iid sample 7 :=
I 76 {X7,..., X"} from the empirical cdf F,, via Algorithm 3.2.6 (hence the resampling size is
1 n p g pling

N = n here).
The rationale is that the empirical cdf F), is close to the actual cdf F and gets closer as
n gets larger. Hence, any quantities depending on F, such as Erg(Y), where g is a function,
can be approximated by Er g(Y). The latter is usually still difficult to evaluate, but it can
be simply estimated via CMC as
| &
X 1211 gy,



Monte Carlo Methods

89

where Y7, ..., Y are independent random variables, each distributed as Y* = H(7). This
seemingly self-referent procedure is called bootstrapping — alluding to Baron von Miin-
chausen, who pulled himself out of a swamp by his own bootstraps. As an example, the
bootstrap estimate of the expectation of Y is

B
EY:Y:E;Yf,

which is simply the sample mean of {Y}. Similarly, the bootstrap estimate for VarY is the
sample variance

— 1 K e
Y=—— > ¥ -Y) 14
Var K_I;( =Y (3.14)

Bootstrap estimators for the bias and MSE are Y - Y and % K.Y * — Y)?, respectively.
Note that for these estimators the unknown quantity u is replaced with its original estimator
Y. Confidence intervals can be constructed in the same fashion. We mention two variants:
the normal method and the percentile method. In the normal method, a 1 — @ confidence
interval for u is given by

(Y £21-0287),

where S* is the bootstrap estimate of the standard deviation of Y; that is, the square root
of (3.14). In the percentile method, the upper and lower bounds of the 1 — @ confidence
interval for u are given by the 1 — /2 and @/2 quantiles of Y, which in turn are estimated
via the corresponding sample quantiles of the bootstrap sample {Y}.

The following example illustrates the usefulness of the bootstrap method for ratio es-
timation and also introduces the renewal reward process model for data.

B Example 3.12 (Bootstrapping the Ratio Estimator) A common scenario in stochastic
simulation is that the output of the simulation consists of independent pairs of data
(C1,R),(Cy, Ry), ..., where each C is interpreted as the length of a period of time — a so-
called cycle — and R is the reward obtained during that cycle. Such a collection of random
variables {(C;, R;)} is called a renewal reward process. Typically, the reward R; depends on
the cycle length C;. Let A, be the average reward earned by time t; that is, A, = Zﬁ’l R;/t,
where N; = max{n : C; + --- + C,, < t} counts the number of complete cycles at time ¢. It
can be shown, see Exercise 20, that if the expectations of the cycle length and reward are
finite, then A, converges to the constant ER/EC. This ratio can thus be interpreted as the
long-run average reward.

Estimation of the ratio ER/EC from data (Cy, R)),...,(C,,R,) is easy: take the ratio
estimator

A=

Qll =l

However, this estimator A is not unbiased and it is not obvious how to derive confidence
intervals. Fortunately, the bootstrap method can come to the rescue: simply resample the
pairs {(C;, R;)}, obtain ratio estimators Aj,..., A}, and from these compute quantities of
interest such as confidence intervals.

As a concrete example, let us return to the Markov chain in Example 3.6. Recall that
the chain starts at state 1 at time 0. After a certain amount of time 7', the process returns

BOOTSTRAPPING

NORMAL METHOD

PERCENTILE
METHOD

RENEWAL
REWARD PROCESS

= 119

LONG-RUN
AVERAGE REWARD

RATIO ESTIMATOR

= 75



90

Monte Carlo Estimation

to state 1. The time steps 0,...,7T; — 1 form a natural “cycle” for this process, as from
time 7'; onwards the process behaves probabilistically exactly the same as when it started,
independently of Xy, ..., Xr,_;. Thus, if we define T = 0, and let 7; be the i-th time that
the chain returns to state 1, then we can break up the time interval into independent cycles
of lengths C; =T; — T;_,i=1,2,.... Now suppose that during the i-th cycle a reward

T,—1
Ri= Y o7 r(X)

=Ty

is received, where r(i) is some fixed reward for visiting state i € {1,2,3,4} and o € (0, 1)
is a discounting factor. Clearly, {(C;, R;)} is a renewal reward process. Figure 3.8 shows the
outcomes of 1000 pairs (C, R), using r(1) = 4,r(2) = 3,r(3) = 10,r(4) = 1, and o = 0.9.

60
50 .
4 of
o ¥ 0>
m o
= 30 %
o
ool &
10 %WOOOOOOOOOOOOQ” o
0 ‘ ‘ | ‘ L | |
0 10 20 30 40 50 50 -
Cycle length

Figure 3.8: Each circle represents a (cycle length, reward) pair. The varying circle sizes
indicate the number of occurrences for a given pair. For example, (2,15.43) is the most

likely pair here, occurring 186 out of a 1000 times. It corresponds to the cycle path 1 —
352> 1.

The long-run average reward is estimated as 2.50 for our data. But how accurate is this
estimate? Figure 3.9 shows a density plot of the bootstrapped ratio estimates, where we
independently resampled the data pairs 1000 times.

O I I I I
2.2 2.4 2.6 2.8

long-run average reward

Figure 3.9: Density plot of the bootstrapped ratio estimates for the Markov chain renewal
reward process.



Monte Carlo Methods

91

Figure 3.9 indicates that the true long-run average reward lies between 2.2 and 2.8
with high confidence. More precisely, the 99% bootstrap confidence interval (percentile
method) is here (2.27, 2.77). The following Python script spells out the procedure.

ratioest.py

import numpy as np, matplotlib.pyplot as plt, seaborn as sns
from numba import jit

np.random.seed(123)

n = 1000

P = np.array([[0, 0.2, 0.5, 0.3],
[6.5 ,0, 0.5, 0],
[6.3, 0.7, 0, 0],

[06.1, O, 0, 0.9]11)
r = np.array([4,3,10,1])
Corg = np.array(np.zeros((n,1)))
Rorg np.array(np.zeros((n,1)))
rho=0.9

@jit #for speed-up; see Appendix
def generate_cyclereward(n):
for i in range(n):
t=1
xreg = 1 #regenerative state (out of 1,2,3,4)
reward = r[0]
x= np.amin(np.argwhere(np.cumsum(P[xreg-1,:]) > np.random.
rand())) + 1
while x != xreg:
t += 1
reward += rho**(t-1)*r[x-1]
x = np.amin(np.where(np.cumsum(P[x-1,:]) > np.random.rand
0O)» +1
Corg[i] =t
Rorg[i] = reward
return Corg, Rorg

Corg, Rorg = generate_cyclereward(n)

Aorg = np.mean(Rorg)/np.mean(Corg)
K = 5000
A = np.array(np.zeros((K,1)))
C = np.array(np.zeros((n,1)))
R = np.array(np.zeros((n,1)))
for i in range(K):
ind = np.ceil(n*np.random.rand(1,n)).astype(int) [0]-1
C = Corg[ind]
R = Rorg[ind]
A[i] = np.mean(R)/np.mean(C)

plt.xlabel('long-run average reward')
plt.ylabel('density"')
sns.kdeplot(A.flatten(),shade=True)
plt.show ()



https://github.com/DSML-book/Programs/blob/master/Chapter3/ratioest.py

92

Monte Carlo Estimation

CONTROL
VARIABLE

= 119

=" 456

=86

3.3.3 Variance Reduction

The estimation of performance measures in Monte Carlo simulation can be made more
efficient by utilizing known information about the simulation model. Variance reduction
techniques include antithetic variables, control variables, importance sampling, conditional
Monte Carlo, and stratified sampling; see, for example, [71, Chapter 9]. We shall only deal
with control variables and importance sampling here.

Suppose Y is the output of a simulation experiment. A random variable Y, obtained
from the same simulation run, is called a control variable for Y if Y and Y are correlated
(negatively or positively) and the expectation of Y is known. The use of control variables
for variance reduction is based on the following theorem. We leave its proof to Exercise 21.

Theorem 3.3: Control Variable Estimation

Let Yi,..., Yy be the output of N independgnt simulation runs and let 71, ... ,71\, be
the corresponding control variables, with EY; = u known. Let g, 7 be the correlation

coefficient between each Y; and 7k. For each a € R the estimator

N
7 = %Z[Yk—a(ffk 1) (3.15)

k=1

is an unbiased estimator for 4 = EY. The minimal variance of 2 is

1
Var 1 = N ¢! —Q;?)VarY, (3.16)

which is obtained for @ = g3 \/ VarY/ VarY.

From (3.16) we see that, by using the optimal @ in (3.15), the variance of the control
variate estimator is a factor 1 — Qiy smaller than the variance of the crude Monte Carlo

estimator. Thus, if Y is highly correlated with Y, a significant variance reduction can be
achieved. The optimal « is usually unknown, but it can be easily estimated from the sample
covariance matrix of {(Y}, ?k)}.

In the next example, we estimate the multiple integral in Example 3.10 using control
variables.

B Example 3.13 (Monte Carlo Integration (cont.)) The random variable Y = |X; + X, +
X;|'2(2)? is positively correlated with the random variable ¥ = X? + X2 + X2, for the
same choice of X, X5, X3 S N, 1). As EY = VYar(X; + X, + X3) = 3, we can use it as a
control variable to estimate the expectation of Y. The following Python program is based

on Theorem 3.3. It imports the crude Monte Carlo sampling code from Example 3.10.



Monte Carlo Methods

93

mcintCV.py

from mcint import *

Yc np.sum(x**2, axis=1) # control variable data
ycC 3 # true expectation of control variable

C = np.cov(y,Yc) # sample covariance matrix

cor = C[0][1]/np.sqrt(CLOI[O]I*C[1I[1])

alpha = C[0][1]/C[1]1[1]

est = np.mean(y-alpha*(Yc-yc))
RECV = np.sqrt((l-cor**2)*C[0][0]/N)/est #relative error

print('Estimate = {:3.3f}, CI = ({:3.3f},{:3.3f}), Corr = {:3.3f}"'.
format (est, est*(1-z*RECV), est*(1+z*RECV),cor))

Estimate = 17.045, CI = (17.032,17.057), Corr = 0.480

A typical estimate of the correlation coeflicient o,y is 0.48, which gives a reduction of
the variance with a factor 1-0.48> ~ 0.77 — a simulation speed-up of 23% compared with
crude Monte Carlo. Although the gain is small in this case, due to the modest correlation
between Y and Y, little extra work was required to achieve this variance reduction. [ |

One of the most important variance reduction techniques is importance sampling. This
technique is especially useful for the estimation of very small probabilities. The standard
setting is the estimation of a quantity

u=EH(X) = fH(x)f(x) dx, (3.17)

where H is a real-valued function and f the probability density of a random vector X,
called the nominal pdf. The subscript f is added to the expectation operator to indicate that
it is taken with respect to the density f.

Let g be another probability density such that g(x) = 0 implies that H(x) f(x) = 0.
Using the density g we can represent u as

J(x) JSX)
fH(x)— (x)dx = E, [H(X) ﬁ] (3.18)

Consequently, if X, ..., Xy ~jq g, then

I X
"= ZHU"«)? ) (3.19)

is an unbiased estimator of u. This estimator is called the importance sampling estimator
and g is called the importance sampling density. The ratio of densities, f(x)/g(x), is called
the likelihood ratio. The importance sampling pseudo-code is given in Algorithm 3.3.2.

IMPORTANCE
SAMPLING

NOMINAL PDF

IMPORTANCE
SAMPLING
ESTIMATOR

LIKELIHOOD RATIO


https://github.com/DSML-book/Programs/blob/master/Chapter3/mcintCV.py

94 Monte Carlo Estimation
Algorithm 3.3.2: Importance Sampling Estimation
input: Function H, importance sampling density g such that g(x) = 0 for all x for
which H(x)f(x) = 0, sample size N, confidence level 1 — a.
output: Point estimate and approximate (1 — @) confidence interval for
u =EH(X), where X ~ f.
1 Simulate X1, ..., Xy ¥ gandletY; = HX)f(X)/g(Xy), i=1,...,N.
2 Estimate p via 77 = Y and determine an approximate (1 — @) confidence interval as
R L
=M= Zep2—=s LT 2-a2—=)>
"N "N
where z, denotes the y-quantile of the N(0, 1) distribution and S is the sample
standard deviation of Yy, ..., Yy.
3 return z and the interval 7.
B Example 3.14 (Importance Sampling) Let us examine the workings of importance
sampling by estimating the area, u say, under the graph of the function
M(xy, x) = et VoS (sin (2 Je+ xg) ; 1), (x1. %)) € R2. (3.20)
= 80 We saw a similar function in Example 3.8 (but note the different domain). A natural ap-

proach to estimate the area is to truncate the domain to the square [—b, b]?, for large enough
b, and to estimate the integral

b b
w= [ @vrme) o dr =500
TS

via crude Monte Carlo, where f(x) = 1/(2b)?, x € [-b, b]?, is the pdf of the uniform distri-
bution on [—b, b]>. Here is the Python code which does just that.

impsampl.py

import numpy as np
from numpy import exp, sqrt, sin, pi, log, cos
from numpy.random import rand

b = 1000

H = lambda x1, x2: (2*b)**2 * exp(-sqrt(x1**2+x2*%*2)/4)*(sin(2*sqrt(
X1*¥24X2%%2))+1) *(X1**2 + X2%*2 < b**2)

f = 1/((2~.‘:b) 7':-.':2)

N = 10%*6

X1 = -b + 2*b*rand(N, 1)

X2 = -b + 2*b*rand(N, 1)

Z = H(X1,X2)

estCMC = np.mean(Z).item() # to obtain scalar

RECMC = np.std(Z)/estCMC/sqrt(N).item()

print('CI = ({:3.3£f},{:3.3f}), RE = {: 3.3f}'.format(estCMC*(1-1.96%
RECMC), estCMC*(1+1.96*RECMC),RECMC))



https://github.com/DSML-book/Programs/blob/master/Chapter3/impsamp1.py

Monte Carlo Methods

95

CI = (82.663,135.036), RE = 0.123

For a truncation level of b = 1000 and a sample size of N = 10°, a typical estimate is
108.8, with an estimated relative error of 0.123. We have two sources of error here. The
first is the error in approximating u by u,. However, as the function H decays exponentially
fast, b = 1000 is more than enough to ensure this error is negligible. The second type of
error is the statistical error, due to the estimation process itself. This can be quantified by
the estimated relative error, and can be reduced by increasing the sample size.

Let us now consider an importance sampling approach in which the importance
sampling pdf g is radially symmetric and decays exponentially in the radius, similar to the
function H. In particular, we simulate (X;, X;) in a way akin to Example 3.1, by first gen-
erating a radius R ~ Exp(1) and an angle ® ~ U(0, 27), and then returning X; = R cos(®)
and X; = Rsin(®). By the Transformation Rule (Theorem C.4) we then have

1 11 deVies
g(X) = fro(n@)- = de " —-= "> " xeR*\{0}.
r

21 r ’
274X + X3

The following code, which imports the one given above, implements the importance
sampling steps, using the parameter 4 = 0.1.

impsamp?2 . py

from impsampl import *

lam = 0.1;

g = lambda x1, x2: lam*exp(-sqrt(x1**2 + x2**2)*lam)/sqrt(x1**2 + x2
**2)/(2%pi);

U = rand(N,1); V = rand(N,1)

R = -log(U)/lam

X1 R*cos (2*pi*V)

X2 R*sin(2*pi*V)

Z = H(X1,X2)*£f/g(X1,X2)

estIS = np.mean(Z).item() # obtain scalar

REIS = np.std(Z)/estIS/sqrt(N).item()

print('CI = ({:3.3£f},{:3.3f}), RE = {: 3.3f}'.format(estIS*(1-1.96%*
REIS), estIS*(1+1.96*REIS),REIS))

CI = (100.723,101.077), RE = 0.001

A typical estimate is 100.90 with an estimated relative error of 1 - 107, which gives
a substantial variance reduction. In terms of approximate 95% confidence intervals, we
have (82.7,135.0) in the CMC case versus (100.7,101.1) in the importance sampling case.
Of course, we could have reduced the truncation level b to improve the performance of
CMC, but then the approximation error might become more significant. For the importance
sampling case, the relative error is hardly affected by the threshold level, but does depend
on the choice of 1. We chose A such that the decay rate is slower than the decay rate of the
function H, which is 0.25. [ ]

As illustrated in the above example, a main difficulty in importance sampling is how to
choose the importance sampling distribution. A poor choice of g may seriously affect the

15 433


https://github.com/DSML-book/Programs/blob/master/Chapter3/impsamp2.py

96 Monte Carlo for Optimization
accuracy of both the estimate and the confidence interval. The theoretically optimal choice
g" for the importance sampling density minimizes the variance of u and is therefore the
solution to the functional minimization program
: f (X))
min Var, [ H(X) — . (3.21)
g F ( gX)
= 119 It is not difficult to show, see also Exercise 22, that if either H(x) > 0 or H(x) < 0 for all
OPTIMAL x, then the optimal importance sampling pdf is
IMPORTANCE

SAMPLING PDF

SIMULATED
ANNEALING

v/,

«

B

g (x) (3.22)

_ Hx) f(x)

—,U .
Namely, in this case Var, 1 = Var,.(H(X)f(X)/g(X)) = Vargu = 0, so that the estimator i
is constant under g*. An obvious difficulty is that the evaluation of the optimal importance
sampling density g* is usually not possible, since g*(x) in (3.22) depends on the unknown
quantity u. Nevertheless, one can typically choose a good importance sampling density g
“close” to the minimum variance density g*.

-

One of the main considerations for choosing a good importance sampling pdf is that
the estimator (3.19) should have finite variance. This is equivalent to the requirement

that
0. o) 2, o (X) o
E, [H (X) g2(X)] =E; [H (X)_g(X)] < 0o, (3.23)

This suggests that g should not have lighter tails than f and that, preferably, the
likelihood ratio, f/g, should be bounded.

3.4 Monte Carlo for Optimization

In this section we describe several Monte Carlo methods for optimization. Such random-
ized algorithms can be useful for solving optimization problems with many local optima
and complicated constraints, possibly involving a mix of continuous and discrete variables.
Randomized algorithms are also used to solve noisy optimization problems, in which the
objective function is unknown and has to be obtained via Monte Carlo simulation.

3.4.1 Simulated Annealing

Simulated annealing is a Monte Carlo technique for minimization that emulates the phys-
ical state of atoms in a metal when the metal is heated up and then slowly cooled down.
When the cooling is performed very slowly, the atoms settle down to a minimum-energy
state. Denoting the state as x and the energy of a state as S (x), the probability distribution
of the (random) states is described by the Boltzmann pdf

_S@
f(x)xce 7, xelX,

where k is Boltzmann’s constant and 7 is the temperature.



Monte Carlo Methods 97
Going beyond the physical interpretation, suppose that S (x) is an arbitrary function to
be minimized, with x taking values in some discrete or continuous set X. The Gibbs pdf
. . GIBBS PDF
corresponding to S (x) is defined as
e‘%
Jfr(x) = , x€X,
2r
provided that the normalization constant z7 := >, exp(—=S(x)/T) is finite. Note that this
is simply the Boltzmann pdf with the Boltzmann constant £ removed. As 7' — 0, the pdf
becomes more and more peaked around the set of global minimizers of S'.
The idea of simulated annealing is to create a sequence of points X, X», ... that are ap-
proximately distributed according to pdfs fr, (x), fr,(x), ..., where T, T, ... is a sequence
of “temperatures” that decreases (is “cooled”) to 0 — known as the annealing schedule. If ANNEALING
each X, were sampled exactly from fr,, then X, would converge to a global minimum of SCHEDULE
S(x)as T, — 0. However, in practice sampling is approximate and convergence to a global
minimum is not assured. A generic simulated annealing algorithm is as follows.
Algorithm 3.4.1: Simulated Annealing
input: Annealing schedule 7, T, ... ,, function §, initial value x.
output: Approximations to the global minimizer x* and minimum value S (x*).
1 Set Xg < xpand ¢ « 1.
2 while not stopping do
3 Approximately simulate X, from f7,(x).
4 L te—t+1
s return X,, S (X,)
A popular annealing schedule is geometric cooling, where T, = BT,_;,t = 1,2, ..., for CEOMETRIC
a given initial temperature 7, and a cooling factor § € (0, 1). Appropriate values for T COOLING

and S are problem-dependent and this has traditionally required tuning on the part of the
user. A possible stopping criterion is to stop after a fixed number of iterations, or when the
temperature is “small enough”.

Approximate sampling from a Gibbs distribution is most often carried out via Markov
chain Monte Carlo. For each iteration ¢, the Markov chain should theoretically run for a
large number of steps to accurately sample from the Gibbs pdf f7,. However, in practice,
one often only runs a single step of the Markov chain, before updating the temperature, as
in Algorithm 3.4.2 below.

To sample from a Gibbs distribution f7, this algorithm uses a random walk Metropolis—
Hastings sampler. From (3.7), the acceptance probability of a proposal y is thus

a(x,y) = min 1
e

~Ls@)

, 1} — min [e 00150 1),

Hence, if S(y) < S(x), then the proposal is aways accepted. Otherwise, the proposal is
accepted with probability exp(—%(S y) - Sx))).

COOLING FACTOR



98

Monte Carlo for Optimization

Algorithm 3.4.2: Simulated Annealing with a Random Walk Sampler
input: Objective function S, starting state X, initial temperature 7, number of
iterations N, symmetric proposal density g(y | x), constant 3.

output: Approximate minimizer and minimum value of S.
1 fort=0toN-1do

2 Simulate a new state Y from the symmetric proposal g(y | X,).
3 if S(Y) < S(X,) then

4 ‘ XY

5 else

6 Draw U ~ U(0, 1).

7 if U < e SM-5ED/T: then

8 ‘ X <Y

9 else

10 | X < X,

m T« BT,
12 return Xy and S (Xy)

B Example 3.15 (Simulated Annealing for Minimization) Let us minimize the “wig-
gly” function depicted in the bottom panel of Figure 3.10 and given by:

—e /10 gin(13x — x*) sin(1 - 3%, if-2<x<2,
Sx) =

00, otherwise.

T=04

o ) 1 |

\ | \ | | T= \
Owlal\r S A AV

Figure 3.10: Lower panel: the “wiggly” function S (x). Upper panel: three (normalized)
Gibbs pdfs for temperatures 7 = 1,0.4,0.2. As the temperature decreases, the Gibbs pdf
converges to the pdf that has all its mass concentrated at the minimizer of S.



NN

- -
W
=

v

Monte Carlo Methods

99

The function has many local minima and maxima, with a global minimum around 1.4.
The figure also illustrates the relationship between S and the (unnormalized) Gibbs pdf fr.

The following Python code implements a slight variant of Algorithm 3.4.2 where, in-
stead of stopping after a fixed number of iterations, the algorithm stops when the temper-
ature is lower than some threshold (here 1073).

Instead of stopping after a fixed number N of iterations or when the temperature
is low enough, it is useful to stop when consecutive function values are closer than
some distance € to each other, or when the best found function value has not changed
over a fixed number d of iterations.

For a “current” state x, the proposal state Y is here drawn from the N(x, 0.5%) distri-
bution. We use geometric cooling with decay parameter 8 = 0.999 and initial temperature
Ty = 1. We set the initial state to xo = 0. Figure 3.11 depicts a realization of the sequence
of states x; for r = 0, 1,.... After initially fluctuating wildly, the sequence settles down
to a value around 1.37, with S(1.37) = —0.92, corresponding to the global optimizer and
minimum, respectively.

simann.py

import numpy as np
import matplotlib.pyplot as plt

def wiggly(x):
y = -np.exp(x**2/100) *np.sin(13*x-x**4)**5%np.sin(1-3%x**2) **2
ind = np.vstack((np.argwhere(x<-2),np.argwhere(x>2)))
y[ind]=float('inf")
return y

S = wiggly
beta = 0.999
sig = 0.5
T=1
Xx= np.array([0])
xx=[]
Sx=S(x)
while T>10**(-3):
T=beta*T
y = X+sig*np.random.randn()
Sy = S(y)
alpha = np.amin((np.exp(-(Sy-Sx)/T),1))
if np.random.uniform()<alpha:
X=y
Sx=Sy
xx=np.hstack ((xx,x))

print('minimizer = {:3.3f}, minimum ={:3.3£f}'.format(x[0],Sx[0]))
plt.plot(xx)
plt.show ()

minimizer = 1.365, minimum = -0.958



https://github.com/DSML-book/Programs/blob/master/Chapter3/simann.py

100

Monte Carlo for Optimization

CROSS-ENTROPY

ELITE SAMPLE

RARITY
PARAMETER

SMOOTHING
PARAMETER

B 456

state

0 1000 2000 3000 4000 5000 6000 7000
number of iterations

Figure 3.11: Typical states generated by the simulated annealing algorithm.

3.4.2 Cross-Entropy Method

The cross-entropy (CE) method [103] is a simple Monte Carlo algorithm that can be used
for both optimization and estimation.

The basic idea of the CE method for minimizing a function § on a set X is to define
a parametric family of probability densities {f(-|v),v € V} on X and to iteratively update
the parameter v so that f(-|v) places more mass on states x that have smaller S values than
on the previous iteration. In particular, the CE algorithm has two basic phases:

e Sampling: Samples X,..., Xy are drawn independently according to f(-|v). The
objective function S is evaluated at these points.

e Updating: A new parameter v’ is selected on the basis of those X; for which S (X;) <
v for some level y. These {X;} form the elite sample set, &.

At each iteration the level parameter y is chosen as the worst of the N°®® := [oN]
best performing samples, where o € (0, 1) is the rarity parameter — typically, o = 0.1 or
© = 0.01. The parameter v is updated as a smoothed average av’+ (1 —a)v, where a € (0, 1)
is the smoothing parameter and

v = argmaxz In f(X|v). (3.24)

veV Xes

The updating rule (3.24) is the result of minimizing the Kullback—Leibler divergence
between the conditional density of X ~ f(x|v) given S(X) <y, and f(x;v); see [103].
Note that (3.24) yields the maximum likelihood estimator (MLE) of v based on the elite
samples. Hence, for many specific families of distributions, explicit solutions can be found.
An important example is where X ~ N(u, diag(c?)); that is, X has independent Gaussian



NN

- -
N4
=
v

Monte Carlo Methods 101

components. In this case, the mean vector g and the vector of variances o are simply

updated via the sample mean and sample variance of the elite samples. This is known as
normal updating. A generic CE procedure for minimization is given in Algorithm 3.4.3.

NORMAL
UPDATING

Algorithm 3.4.3: Cross-Entropy Method for Minimization
input: Function S, initial sampling parameter vy, sample size N, rarity parameter
0, smoothing parameter .

output: Approximate minimum of S and optimal sampling parameter v.

Initialize vy, set N®® « [oN] and ¢ < 0.

while a stopping criterion is not met do

te—t+1

Simulate an 1id sample X1, ..., Xy from the density f(-|v;—;).

Evaluate the performances S (X;), ..., S (Xy) and sort them from smallest to
largest: S 1y, ..., S ).

6 Let y, be the sample o-quantile of the performances:

Ve & S ey (3.25)

[V I N

7 Determine the set of elite samples &, = {X; : S(X;) < y:}.
8 Let v; be the MLE of the elite samples:

V] < argmax Z In f(X|v). (3.26)
v Xe&,
9 Update the sampling parameter as
v, —av, + (1 —a)y,.;. (3.27)
10 return vy, v,
The CE algorithm produces a sequence of pairs (yy,v1), (¥2,72), ..., such that y, con-

verges (approximately) to the minimal function value, and f(-|v,) to a degenerate pdf that
(approximately) concentrates all its mass at a minimizer of S, as t — oco. A possible stop-
ping condition is to stop when the sampling distribution f(-|v,) is sufficiently close to a
degenerate distribution. For normal updating this means that the standard deviation is suf-
ficiently small.

The output of the CE algorithm could also include the overall best function value
and corresponding solution.

/

In the following example, we minimize the same function as in Example 3.15, but = 97
instead use the CE algorithm.

B Example 3.16 (Cross-Entropy Method for Minimization) In this case we take the
family of normal distributions {N(u, o%)} for the sampling step (Step 4 of Algorithm 3.4.3),
starting with ¢ = 0 and o~ = 3. The choice of the initial parameter is quite arbitrary, as long
as o is large enough to sample a wide range of points. We take N = 100 samples at each it-
eration, set 0 = 0.1, and keep the N°® = 10 = [No] smallest ones as the elite samples. The
parameters u and o are then updated via the sample mean and sample standard deviation



102

Monte Carlo for Optimization

of the elite samples. In this case we do not use any smoothing (¢ = 1). In the following
Python code the 100 X 2 matrix Sx stores the x-values in the first column and the func-
tion values in the second column. The rows of this matrix are sorted in ascending order
according to the function values, giving the matrix sortSx. The first N = 10 rows of
this sorted matrix correspond to the elite samples and their function values. The updating
of p and o is done in Lines 14 and 15. Figure 3.12 shows how the pdfs of the N(u;, o?)
sampling distributions degenerate to the point mass at the global minimizer 1.366.

CEmethod.py

from simann import wiggly
import numpy as np
np.set_printoptions(precision=3)
mu, sigma = 0, 3
N, Nel = 100, 10
eps = 10**-5
S = wiggly
while sigma > eps:
X = np.random.randn(N,1)*sigma + np.array(np.ones((N,1)))*mu
Sx = np.hstack((X, S(X)))
sortSx = Sx[Sx[:,1].argsort(),]
Elite = sortSx[0:Nel,:-1]
mu = np.mean(Elite, axis=0)
sigma = np.std(Elite, axis=0)
print('S(mu)= {}, mu: {}, sigma: {}\n'.format(S(mu), mu, sigma))

S(mu)= [0.071], mu: [0.414], sigma: [0.922]
S(mu)= [0.063], mu: [0.81], sigma: [0.831]
S(mu)= [-0.033], mu: [1.212], sigma: [0.69]
S(mu)= [-0.588], mu: [1.447], sigma: [0.117]
S(mu)= [-0.958], mu: [1.366], sigma: [0.007]
S(mu)= [-0.958], mu: [1.366], sigma: [0.]

S(mu)= [-0.958], mu: [1.366], sigma: [3.535e-05]
S(mu)= [-0.958], mu: [1.366], sigma: [2.023e-06]



https://github.com/DSML-book/Programs/blob/master/Chapter3/CEmethod.py

Monte Carlo Methods

103

/

1.5¢

[

f(x;p,0)

2
0.5 iteration 0 \

0, I / I I \¥ |
0 x

-2 -1

Figure 3.12: The normal pdfs of the first six sampling distributions, truncated to the interval
[-2, 3]. The initial sampling distribution is N(0, 3%).

3.4.3 Splitting for Optimization

Minimizing a function S (x), x € X is closely related to drawing a random sample from a
level set of the form {x € X : §(x) < y}. Suppose S has minimum value y* attained at x*.
As long as y > 7, this level set contains the minimizer. Moreover, if y is close to y*, the
volume of this level set will be small. So, a randomly selected point from this set is expected
to be close to x*. Thus, by gradually decreasing the level parameter vy, the level sets will
gradually shrink towards the set {x*}. Indeed, the CE method was developed with exactly
this connection in mind; see, e.g., [102]. Note that the CE method employs a parametric
sampling distribution to obtain samples from the level sets (the elite samples). In [34]
a non-parametric sampling mechanism is introduced that uses an evolving collection of
particles. The resulting optimization algorithm, called splitting for continuous optimization
(SCO), provides a fast and accurate way to optimize complicated continuous functions. The
details of SCO are given in Algorithm 3.4.4.

At iteration # = 0, the algorithm starts with a population of particles Y, = {Y,..., Yy}
that are uniformly generated on some bounded region 8B, which is large enough to contain
a global minimizer. The function values of all particles in Y are sorted, and the best
Nelitt = [Np] form the elite particle set X, exactly as in the CE method. Next, the elite
particles are “split” into | N/N®| children particles, adding one extra child to some of
the elite particles to ensure that the total number of children is again N. The purpose of
Line 4 is to randomize which elite particles receive an extra child. Lines 815 describe
how the children of the i-th elite particle are generated. First, in Line 9, we select one
of the other elite particles uniformly at random. The same line defines an n-dimensional
vector o; whose components are the absolute differences between the vectors X(; and X ;),

LEVEL SET

SPLITTING FOR
CONTINUOUS
OPTIMIZATION



104

Monte Carlo for Optimization

=115

Algorithm 3.4.4: Splitting for Continuous Optimization (SCO)
input: Objective function S, sample size N, rarity parameter o, scale factor w,
bounded region B C X that is known to contain a global minimizer, and
maximum number of attempts MaxTry.
output: Final iteration number ¢ and sequence (Xpest.1, 1), - - - » (Xbests» br) Of best
solutions and function values at each iteration.
1 Simulate Yy = {Y},..., Yy} uniformly on B. Set ¢ « 0 and N°® « [Np].
2 while stopping condition is not satisfied do

3 Determine the N°'*® smallest values, S 1) < - -+ < S yeiiey, of {S(X), X € Y},
and store the corresponding vectors, Xy, . .., Xyeie), in Xy j. Set by «— Sy
and Xpesii+1 < X(1). .

4+ | Draw B; ~ Bernoulli(}), i = 1,..., N with YY" B, = N mod Neit.

5 | fori=1to N do

6 R, « {%J + B; // random splitting factor

7 Y XY <Y

8 for j=1toR; do

9 Draw I € {1,..., N} \ {{} uniformly and let o; < w|X® — XV},

10 Simulate a uniform permutation & = (71y,...,m,) of (1,...,n).

11 fork=1tondo

12 for Try = 1 to MaxTry do

13 Y (m) « Y(mp) + oi(m)Z, Z ~ N, 1)

14 L if S(Y') < S(Y)thenY « Y’ and break.

15 Add Y to M,

16 te—t+1

17 return {(Xypeser, bx), k= 1,...,1}

multiplied by a constant w. That is,

(X1 = Xl
o =wlXy - Xpli=w KXo _:X(I),2|
Xy = Xyl
Next, a uniform random permutation & of (1,...,n) is simulated (see Exercise 9). Lines

11-14 describe how, starting from a candidate child point Y, each coordinate of Y is re-
sampled, in the order determined by &, by adding a standard normal random variable to
that component, multiplied by the corresponding component of o; (Line 13). If the result-
ing Y’ has a function value that is less than that of Y, then the new candidate is accepted.
Otherwise, the same coordinate is tried again. If no improvement is found in MaxTry at-
tempts, the original component is retained. This process is performed for all elite samples,
to produce the first-generation population Y. The procedure is then repeated for iterations
t =1,2,..., until some stopping criterion is met, e.g., when the best found function value
does not change for a number of consecutive iterations, or when the total number of func-
tion evaluations exceeds some threshold. The best found function value and corresponding



Monte Carlo Methods 105
argument (particle) are returned at the conclusion of the algorithm.

The input variable MaxTry governs how much computational time is dedicated to up-
dating a component. In most cases we have encountered, the choices w = 0.5 and MaxTry
= 5 work well. Empirically, relatively high value for o work well, such as o = 0.4,0.8, or
even o = 1. The latter case means that at each stage ¢ all samples from Y,_; carry over to
the elite set X,.

B Example 3.17 (Test Problem 112) Hock and Schittkowski [58] provide a rich source
of test problems for multiextremal optimization. A challenging one is Problem 112, where
the goal is to find x so as to minimize the function
10 .
S(x) = e, +In ————L——|,
(x) ]Z:;xj(c] nx1 Fa——
subject to the following set of constraints:
X1 +2X2+2X3+.X6+X10—2 = 0,
X4 +2x5+x6+x7—1 = 0,
X3+x7+X3+2)C9+X10—1 = 0,
x; > 0.000001, j=1,...,10,
where the constants {c;} are given in Table 3.1.
Table 3.1: Constants for Test Problem 112.
c1 =—-6.089 ¢, =-17.164 c3=-34.054 c4=-5914 c5=-24.721
ce = —14986 7 =-24.100 c3=-10.708 c9=-26.662 cp=—-22.179

The best known minimal value in [58] was —47.707579. In [89] a better solution was
found, —47.760765, using a genetic algorithm. The corresponding solution vector was
completely different from the one in [58]. A further improvement,—47.76109081, was
found in [70], using the CE method, giving a similar solution vector to that in [89]:

0.04067247 0.14765159 0.78323637 0.00141368 0.48526222
0.00069291 0.02736897 0.01794290 0.03729653 0.09685870

To obtain a solution with SCO, we first converted this 10-dimensional problem into a

7-dimensional one by defining the objective function
S7(y) =S (%),

where X, = y1, X3 = y2, X5 = y3, X = Ya, X7 = Y5, X9 = Y6, X190 = Y7, and

x1 = 2=y 42y +ys + x7),

xs = 1=Qys+ys+ys),

xg = 1—=(n2+ys+2y6+y7),
subject to xi, ..., x;o = 0.000001, where the {x;} are taken as functions of the {y;}. We then
adopted a penalty approach (see Section B.4) by adding a penalty function to the original =" 415



106

Monte Carlo for Optimization

NOISY
OPTIMIZATION

= 20

STOCHASTIC
APPROXIMATION

CENTRAL
DIFFERENCE
ESTIMATOR

S
,@\
=
COMMON RANDOM
NUMBERS

objective function:

10
S(y) = S(x) + 1000 Z max{—(x; — 0.000001), 0},

i=1

where, again, the {x;} are defined in terms of the {y;} as above.
Optimizing this last function with SCO, we found, in less time than the other al-
gorithms, a slightly smaller function value: —47.761090859365858, with solution vector

0.040668102417464 0.147730393049955 0.783153291185250 0.001414221643059
0.485246633088859  0.000693172682617 0.027399339496606 0.017947274343948
0.037314369272343  0.096871356429511

in line with the earlier solutions. [ ]

3.4.4 Noisy Optimization

In noisy optimization, the objective function is unknown, but estimates of function val-
ues are available, e.g., via simulation. For example, to find an optimal prediction function
g in supervised learning, the exact risk £(g) = ELoss(Y, g(x)) is usually unknown and
only estimates of the risk are available. Optimizing the risk is thus typically a noisy op-
timization problem. Noisy optimization features prominently in simulation studies where
the behavior of some system (e.g., vehicles on a road network) is simulated under certain
parameters (e.g., the lengths of the traffic light intervals) and the aim is to choose those
parameters optimally (e.g., to maximize the traffic throughput). For each parameter setting
the exact value for the objective function is unknown but estimates can be obtained via the
simulation.

In general, suppose the goal is to minimize a function S, where S is unknown, but
an estimate of S (x) can be obtained for any choice of x € X. Because the gradient VS is
unknown, one cannot directly apply classical optimization methods. The stochastic approx-
imation method mimics the classical gradient descent method by replacing a deterministic
gradient with an estimate ﬁ(x).

A simple estimator for the i-th component of VS (x) (that is, dS (u)/0x;), is the central
difference estimator

S(x+e6/2)—S(x—e5/2)
5 :

where e; denotes the i-th unit vector, and §(x+e,- 0/2)and §(x—e ;0/2) can be any estimators
of S(x +€;0/2) and S (x — e;6/2), respectively. The difference parameter 6 > 0 should be
small enough to reduce the bias of the estimator, but large enough to keep the variance of
the estimator small.

(3.28)

To rgguce the variance in the estimator (3.28) it is important to have §(x +e;0/2)
and S (x — e; 6/2) positively correlated. This can for example be achieved by using
common random numbers in the simulation.




Monte Carlo Methods 107

In direct analogy to gradient descent methods, the stochastic approximation method =" 412
produces a sequence of iterates, starting with some x; € X, via
X1 =X — B VS (x,), (3.29)

where 1,5, . .. 1s a sequence of strictly positive step sizes. A generic stochastic approx-
imation algorithm for minimizing a function S is thus as follows.

Algorithm 3.4.5: Stochastic Approximation

input: A mechanism to estimate any gradient VS (x) and step sizes 31,52, . . ..
output: Approximate optimizer of S.

Initialize x; € X. Sett « 1.

while a stopping criterion is not met do

Obtain an estimated gradient ﬁ(x,) of § at x;.
Determine a step size ;.

Set xH_l «— x, _ﬁl VS (x,).

6 t—t+1

N

wn

7 return Xx;

When ﬁ(x,) is an unbiased estimator of VS (x,) in (3.29) the stochastic approxima-
tion Algorithm 3.4.5 is referred to as the Robbins—Monro algorithm. When finite differ-
ences are used to estimate ﬁ(x,), as in (3.28), the resulting algorithm is known as the
Kiefer—Wolfowitz algorithm. In Section 9.4.1 we will see how stochastic gradient descent

RoBBINS—MONRO

. . . e .. . . KIEFER—
is employed in deep learning to minimize the training loss, based on a “minibatch” of WOLFOWITZ
training data. Iz 335

It can be shown [72] that, under certain regularity conditions on §, the sequence
X1, X, ... converges to the true minimizer x* when the step sizes decrease slowly enough
to 0; in particular, when

D B=c and ) fl<oo (3.30)
t=1 =1
KIn practice, one rarely uses step sizes that satisfy (3.30), as the convergence of the

sequence will be too slow to be of practical use.

An alternative approach to stochastic approximation is the stochastic counterpart STOCHASTIC
method, also called sample average approximation. It can be applied in situations where COUNTERPART
the noisy objective function is of the form

S(x) =ES(x,&), xelX, (3.31)

where £ is a random vector that can be simulated and S (x, &) can be evaluated exactly. The
idea is to replace the optimization of (3.31) with that of the sample average

N
S(x) = % Z Sx.£), xeX, (3.32)

where &,,. .., &)y are iid copies of €. Note that S is a deterministic function of x and so can
be optimized using any optimization algorithm. A solution to this sample average version
is taken to be an estimator of a solution x* to the original problem (3.31).



108

Monte Carlo for Optimization

0 94

=" 93

= 119

B Example 3.18 (Determining Good Importance Sampling Parameters) The selection
of good importance sampling parameters can be viewed as a stochastic optimization prob-

lem. Consider, for instance, the importance sampling estimator in Example 3.14. Recall

that the nominal distribution is the uniform distribution on the square [—b, b]?, with pdf

Jo(x) = x € [-b,b],

1
(2b)*’
where b is large enough to ensure that y,, is close to y; in that example, we chose b = 1000.
The importance sampling pdf is

1 | T A
ga(x) = frolr, 9); =deV——="— o x=(x,Xx) R\ {0},

21 r ’
27\ xT + X3

which depends on a free parameter A. In the example we chose 4 = 0.1. Is this the best
choice? Maybe A = 0.05 or 0.2 would have resulted in a more accurate estimate. The im-
portant thing to realize is that the “effectiveness” of A can be measured in terms of the
variance of the estimator  in (3.19), which is given by
2 2 2
~var, (H(X)&) - 1, [H%X)f (X)] SRy [H%X)ﬂ] u
N g1(X) g&X| N N ga(X)
Hence, the optimal parameter A* minimizes the function S (1) = E/[H*(X)f(X)/g:(X)],
which is unknown, but can be estimated from simulation. To solve this stochastic minim-
ization problem, we first use stochastic approximation. Thus, at each step of the algorithm,
the gradient of S(A) is estimated from realizations of §(/l) = H*(X)f(X)/g.i(X), where
X ~ fp. As in the original problem (that is, the estimation of u), the parameter b should
be large enough to avoid any bias in the estimator of A*, but also small enough to en-
sure a small variance. The following Python code implements a particular instance of Al-
gorithm 3.4.5. For sampling from f;, here, we used » = 100 instead of b = 1000, as this will
improve the crude Monte Carlo estimation of A%, without noticeably affecting the bias. The
gradient of S (1) is estimated in Lines 11-17, using the central difference estimator (3.28).
Notice how for the S (1—6/2) and S (1+6/2) the same random vector X = [X|, X,]" is used.
This significantly reduces the variance of the gradient estimator; see also Exercise 23. The
step size B; should be such that ,8,63 (x;) = A,. Given the large gradient here, we choose
Bo = 1077 and decrease it each step by a factor of 0.99. Figure 3.13 shows how the se-
quence Ay, 4, ... decreases towards approximately 0.125, which we take as an estimator
for the optimal importance sampling parameter 1*.

stochapprox.py

import numpy as np
from numpy import pi
import matplotlib.pyplot as plt

N

N

b=100 # choose b large enough, but not too large
delta = 0.01
H = lambda x1, x2: (2*b)**2*np.exp(-np.sqrt(x1**2 + x2**2)/4)*(np.



https://github.com/DSML-book/Programs/blob/master/Chapter3/stochapprox.py

Monte Carlo Methods

109

sin(2*np.sqrt (x1**2+x2**2)+1) ) *(x1%**2+x2**2<b**2)
f = 1/(2%b)**2
g = lambda x1, x2, lam: lam*np.exp(-np.sqrt(x1**2+x2**2)*1lam)/np.
sqrt (x1**2+x2%*2) /(2%pi)
beta = 10%*-7 #step size very small, as the gradient is large
lam=0.25
lams = np.array([lam])
N=10%*4
for i in range(200):
x1 = -b + 2*b*np.random.rand(N, 1)
x2 = -b + 2*b*np.random.rand(N, 1)
lamL = lam - delta/2
lamR = lam + delta/2
estlL = np.mean(H(x1,x2)**2*f/g(x1, x2, lamL))
estR = np.mean(H(x1,x2)**2*f/g(x1, x2, lamR)) #use SAME x1,x2
gr = (estR-estl)/delta #gradient
lam = lam - gr*beta #gradient descend
lams = np.hstack((lams, lam))
beta = beta®0.99

lamsize=range(®, (lams.size))
plt.plot(lamsize, lams)
plt.show ()

0.24

0.22 A

0.20 A

0.18 A

0.16 A

0.14 A

0.12

0 25 50 75 100 125 150 175 200
steps

Figure 3.13: The stochastic optimization algorithm produces a sequence A,,t = 0,1,2,...
that tends to an approximate estimate of the optimal importance sampling parameter 1* =
0.125.

Next, we estimate A* using a stochastic counterpart approach. As the objective function
S (1) is of the form (3.31) (with A taking the role of x and X the role of &), we obtain the
sample average
Jf(X)
(X’

where X1, ..., Xy ~iia fp- Once the Xy,..., Xy ~iiq f» have been simulated, §(ﬂ) is a de-
terministic function of A, which can be optimized by any means. We take the most basic

N
S = % Z H(X) (3.33)
i=1



110

Monte Carlo for Optimization

approach and simply evaluate the function for 4 = 0.01,0.02,...,0.3 and select the min-
imizing A on this grid. The code is given below and Figure 3.14 shows §(/l) as a function
OLLﬂmmmmmmwmeMMW%060Hﬁmnmmmﬁmﬁﬂ:QUAWMthawmd
ance with the value obtained via stochastic approximation. The sensitivity of this estimate
can be assessed from the graph: for a wide range of values (say from 0.04 to 0.15) S stays
rather flat. So any of these values could be used in an importance sampling procedure to
estimate u. However, very small values (less than 0.02) and large values (greater than 0.25)
should be avoided. Our original choice of 4 = 0.1 was therefore justified and we could not
have done much better.

stochcounterpart.py

from stochapprox import *

lams = np.linspace(0.01, 0.31, 1000)
res=[]
res = np.array(res)
for i in range(lams.size):
lam = lams[i]
np.random.seed (1)

g = lambda x1, x2: lam*np.exp(-np.sqrt(x1**2+x2**2)*lam)/np.sqrt
(x1*%2+x2%%2) /(2%pi)
X=-b+2*b*np.random.rand(N, 1)
Y=-b+2*b*np.random.rand (N, 1)

Z=H(X,Y)**2%£/g(X,Y)
estCMC = np.mean(Z)
res = np.hstack((res, estCMC))

plt.plot(lams, res)

plt.xlabel (r'$\lambda$")

plt.ylabel(r'$\hat{S}(\lambda)$')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
plt.show ()



https://github.com/DSML-book/Programs/blob/master/Chapter3/stochcounterpart.py

Monte Carlo Methods

111

led

3.0 1

2.5 1
< 2.0
<n

1.5 A1

1.0 A

0.5 -
0.00 0.05 0.10 0.15 0.20 0.25 0.30

>

Figure 3.14: The stochastic counterpart method replaces the unknown S (1) (that is, the
scaled variance of the importance sampling estimator) with its sample average, S (1). The
minimum value of S is attained around 4 = 0.12.

A third method for stochastic optimization is the cross-entropy method. In particular,
Algorithm 3.4.3 can easily be modified to minimize noisy functions S (x) = Eg(x, £), as
defined in (3.31). The only change required in the algorithm is that every function value
S (x) be replaced by its estimate S(x). Depending on the level of noise in the function, the
sample size N might have to be increased considerably.

B Example 3.19 (Cross-Entropy Method for Noisy Optimization) To explore the use
of the CE method for noisy optimization, take the following noisy discrete optimization
problem. Suppose there is a “black box™ that contains an unknown binary sequence of n
bits. If one feeds the black box any input vector, it will first scramble the input by inde-
pendently flipping the bits (changing 0 to 1 and 1 to 0) with a probability 6 and then return
the number of bits that do not match the true (unknown) binary sequence. This is illustrated
in Figure 3.15 for n = 10.

1001011101 input

v

1100010101]| scrambled
1111100000/ true

'

4 output

Figure 3.15: A noisy optimization function as a black box. The input to the black box is a
binary vector. Inside the black box the digits of the input vector are scrambled by flipping
bits with probability 6. The output is the number of bits of the scrambled vector that do not
match the true (unknown) binary vector.

= 101



112

Monte Carlo for Optimization

= 101

Denoting by S (x) the true number of matching digits for a binary input vector x, the
black box thus returns a noisy estimate S(x). The objective is to estimate the binary se-
quence inside the black box, by feeding it with many input vectors and observing their
output. Or, to put it in a different way, to minimize S (x) using S(x)asa proxy. Since there
are 2" possible input vectors, it is infeasible to try all possible vectors x even for moderate
n.

The following Python program implements the noisy function S (x) for n = 100. Each
input bit is flipped with a rather high probability 6 = 0.4, so that the output is a poor indic-
ator of how many bits actually match the true vector. This true vector has 1s at positions
1,...,50 and Os at 51, ..., 100.

Snoisy.py

import numpy as np

def Snoisy(X): #takes a matrix
n = X.shape[1]
N = X.shape[0]
# true binary vector
xorg = np.hstack((np.ones((1,n//2)), np.zeros((l,n//2))))
theta = 0.4 # probability to flip the input
# storing the number of bits unequal to the true vector
s = np.zeros(N)
for i in range(®,N):
# determine which bits to flip
flip = (np.random.uniform(size=(n)) < theta).astype(int)
ind = flip>0
X[i][ind] = 1-X[i][ind]
s[i] = (X[i] !'= xorg).sum()
return s

The CE code below to optimize S (x) is quite similar to the continuous optimization
code in Example 3.16. However, instead of sampling iid random variables X1, ..., Xy from
a normal distribution, we now sample iid binary vectors X1, ..., Xy from a Ber(p) distribu-
tion. More precisely, given a row vector of probabilities p = [py, ..., p,], we independently
simulate the components X, ..., X, of each binary vector X according to X; ~ Ber(p,),
i = 1,...,n. After each iteration, the vector p is updated as the (vector) mean of the elite
samples. The sample size is N = 1000 and the number of elite samples is 100. The compon-
ents of the initial sampling vector p are all equal to 1/2; that is, the X are initially uniformly
sampled from the set of all binary vectors of length n = 100. At each subsequent iteration
the parameter vector is updated via the mean of the elite samples and evolves towards a
degenerate vector p* with only Is and Os. Sampling from such a Ber(p*) distribution gives
an outcome x* = p*, which can be taken as an estimate for the minimizer of S'; that is, the
true binary vector hidden in the black box. The algorithm stops when p has degenerated
sufficiently.

Figure 3.16 shows the evolution of the vector of probabilities p. This figure may be
seen as the discrete analogue of Figure 3.12. We see that, despite the high noise, the CE
method is able to find the true state of the black box, and hence the minimum value of S.


https://github.com/DSML-book/Programs/blob/master/Chapter3/Snoisy.py

Monte Carlo Methods

113

0 10 20 30 40 50 60 70 80 90 100

Figure 3.16: Evolution of the vector of probabilities p = [py, ..., p,] towards the degener-
ate solution.

CEnoisy.py

from Snoisy import Snoisy
import numpy as np

n = 100
rho = 0.1
N 1000; Nel = int(N*rho); eps = 0.01

p 0.5*np.ones(n)

i 0

pstart = p

ps = np.zeros((1000,n))

ps[0] = pstart

pdist = np.zeros((1,1000))

while np.max(np.minimum(p,1-p)) > eps:
i+=1
X = (np.random.uniform(size=(N,n)) < p).astype(int)
X_tmp = np.array(X, copy=True)
SX = Snoisy(X_tmp)



https://github.com/DSML-book/Programs/blob/master/Chapter3/CEnoisy.py

114 Exercises
ids = np.argsort(SX,axis=0)
Elite = X[ids[0®:Nel],:]
p = np.mean(Elite,axis=0)
ps[i] = p
print(p)
|

= 69

Further Reading

The article [68] explores why the Monte Carlo method is so important in today’s quantitat-
ive investigations. The Handbook of Monte Carlo Methods [71] provides a comprehensive
overview of Monte Carlo simulation that explores the latest topics, techniques, and real-
world applications. Popular books on simulation and the Monte Carlo method include [42],
[75], and [104]. A classic reference on random variable generation is [32]. Easy introduc-
tions to stochastic simulation are given in [49], [98], and [100]. More advanced theory
can be found in [5]. Markov chain Monte Carlo is detailed in [50] and [99]. The research
monograph on the cross-entropy method is [103] and a tutorial is provided in [30]. A range
of optimization applications of the CE method is given in [16]. Theoretical results on ad-
aptive tuning schemes for simulated annealing may be found, for example, in [111]. There
are several established ways for gradient estimation. These include the finite difference
method, infinitesimal perturbation analysis, the score function method, and the method of
weak derivatives; see, for example, [51, Chapter 7].

Exercises

1. We can modify the Box—Muller method in Example 3.1 to draw X and Y uniformly
on the unit disc, {(x,y) € R? : x> +y? < 1}, in the following way: Independently draw
a radius R and an angle ® ~ U(0, 27), and return X = Rcos(®),Y = Rsin(®). The
question is how to draw R.

(a) Show that the cdf of R is given by Fx(r) = r* for 0 < r < 1 (with Fg(r) = 0 and
Fr(r) =1forr <0andr > 1, respectively).

(b) Explain how to simulate R using the inverse-transform method.

(¢) Simulate 100 independent draws of [X, Y]™ according to the method described

above.

2. A simple acceptance—rejection method to simulate a vector X in the unit d-ball {x €
RY : |lx|| < 1} is to first generate X uniformly in the hyper cube [—1, 1]¢ and then to
accept the point only if || X]|| < 1. Determine an analytic expression for the probability
of acceptance as a function of d and plot this ford = 1,...,50.

3. Let the random variable X have pdf

%x, 0<x<l,
X) =
A



Monte Carlo Methods

115

Simulate a random variable from f(x), using

(a) the inverse-transform method;

(b) the acceptance-rejection method, using the proposal density

g(x):%x, O<x<§.

4. Construct simulation algorithms for the following distributions:

(a) The Weib(e, 1) distribution, with cdf F(x) = 1 —e ™", x > 0, where A > 0 and
a > 0.

(b) The Pareto(a, A) distribution, with pdf f(x) = @d(1 + Ax)"@*D, x > 0, where
A>0and a > 0.

5. We wish to sample from the pdf
f(x)=xe™, x>0,
using acceptance—rejection with the proposal pdf g(x) = e™*/2/2, x > 0.

(a) Find the smallest C for which Cg(x) > f(x) for all x.

(b) What is the efficiency of this acceptance-rejection method?

6. Let [X, Y]" be uniformly distributed on the triangle with corners (0, 0), (1,2), and
(-1, 1). Give the distribution of [U, V]" defined by the linear transformation

Ul (1 2||X
V| |3 4||Y|
7. Explain how to generate a random variable from the extreme value distribution,
which has cdf

Fx)=1-e%) | _oo<x<oo, (o>0),
via the inverse-transform method.

8. Write a program that generates and displays 100 random vectors that are uniformly
distributed within the ellipse

5x°+21xy+25y*=09.

[Hint: Consider generating uniformly distributed samples within the circle of radius
3 and use the fact that linear transformations preserve uniformity to transform the
circle to the given ellipse.]

9. Suppose that X; ~ Exp(4;), independently, foralli = 1,...,n. Let I = [I1;,...,I1,]"
be the random permutation induced by the ordering X, < Xp, < -+ < Xy, and
define Z; := Xy, and Z; := Xy, — Xpy,_, for j=2,...,n.



116 Exercises

(a) Determine an n X n matrix A such that Z = AX and show that det(A) = 1.
(b) Denote the joint pdf of X and IT as

Sxn(x,m) = l_[ A, €XP (A X)) X WXy <+ < xg,}, x20, TEP,,
i=1

where P, is the set of all n! permutations of {1,...,n}. Use the multivariate
IS 432 transformation formula (C.22) to show that

n

fzn(z,m) = exp (— Z Z Z /lﬂk] ﬁ A, 220, TeP,.
i=1

i=1 k>i

Hence, conclude that the probability mass function of the random permutation

I is:
n
Ar,
Pl =nx] = , WEP,.
i=1 Zk?l /17[/{
(c) Write pseudo-code to simulate a uniform random permutation Il € #,; that is,
such that P[IT = xr] = %, and explain how this uniform random permutation

can be used to reshuffle a training set 7,,.

10. Consider the Markov chain with transition graph given in Figure 3.17, starting in
state 1.

Figure 3.17: The transition graph for the Markov chain {X;,r =0,1,2,...}.

(a) Construct a computer program to simulate the Markov chain, and show a real-
ization for N = 100 steps.

(b) Compute the limiting probabilities that the Markov chain is in state 1,2,...,6,
I 452 by solving the global balance equations (C.42).

(c) Verify that the exact limiting probabilities correspond to the average fraction
of times that the Markov process visits states 1,2,...,6, for a large number of
steps N.

I 453 11. As a generalization of Example C.9, consider a random walk on an arbitrary undir-
ected connected graph with a finite vertex set V. For any vertex v € V, let d(v) be



Monte Carlo Methods

117

the number of neighbors of v — called the degree of v. The random walk can jump to
each one of the neighbors with probability 1/d(v) and can be described by a Markov
chain. Show that, if the chain is aperiodic, the limiting probability that the chain is
in state v is equal to d(v)/ 3. ey d(V).

12. Let U, V ~;i3 U(0, 1). The reason why in Example 3.7 the sample mean and sample
median behave very differently is that E[U/V] = oo, while the median of U/V is
finite. Show this, and compute the median. [Hint: start by determining the cdf of
Z = U/V by writing it as an expectation of an indicator function. ]

13. Consider the problem of generating samples from ¥ ~ Gamma(2, 10).

(a) Direct simulation: Let Uy, U, ~;;¢ U(0, 1). Show that — In(U;)/10-1n(U,)/10 ~
Gamma(2, 10). [Hint: derive the distribution of —In(U;)/10 and use Ex-
ample C.1.]

(b) Simulation via MCMC: Implement an independence sampler to simulate from
the Gamma(2, 10) target pdf

f(x)=100xe %, x>0,

using proposal transition density g(y|x) = g(y), where g(y) is the pdf of an
Exp(5) random variable. Generate N = 500 samples, and compare the true cdf
with the empirical cdf of the data.

14. Let X = [X, Y]" be a random column vector with a bivariate normal distribution with
expectation vector g = [1,2]" and covariance matrix

=|o 5

(a) What are the conditional distributions of (Y | X = x) and (X |Y = y)? [Hint: use
Theorem C.8.]

(b) Implement a Gibbs sampler to draw 10* samples from the bivariate distribution

N, X) fora =0, 1, and 1.75, and plot the resulting samples.

15. Here the objective is to sample from the 2-dimensional pdf
flx,y)=ce @™ x>0, y>0,
for some normalization constant ¢, using a Gibbs sampler. Let (X, Y) ~ f.
(a) Find the conditional pdf of X given Y = y, and the conditional pdf of Y given

X = x.

(b) Write working Python code that implements the Gibbs sampler and outputs
1000 points that are approximately distributed according to f.
(c) Describe how the normalization constant ¢ could be estimated via Monte Carlo

simulation, using random variables Xy, ..., Xy, Y1,..., Yn S Exp(1).

= 76

15 427

1= 436



118 Exercises

16. We wish to estimate u = f_ 22 e2dx = f H(x)f(x)dx via Monte Carlo simulation

using two different approaches: (1) defining H(x) = 412 and f the pdf of the
U[-2, 2] distribution and (2) defining H(x) = V27 1{-2 < x < 2} and f the pdf of
the N(0, 1) distribution.

(a) For both cases estimate u via the estimator i
N
a=N" Z H(X). (3.34)
i=1

Use a sample size of N = 1000.
(b) For both cases estimate the relative error k of u using N = 100.
(c) Give a 95% confidence interval for u for both cases using N = 100.

(d) From part (b), assess how large N should be such that the relative width of the
confidence interval is less than 0.01, and carry out the simulation with this N.
Compare the result with the true value of u.

17. Consider estimation of the tail probability u = P[X > y] of some random variable X,
where v is large. The crude Monte Carlo estimator of u is

1 N
= Zz,., (3.35)

where X, ..., Xy are iid copies of X and Z; = 1{X; > v},i=1,...,N.

(a) Show that i is unbiased; that is, E u = u.
(b) Express the relative error of 1, i.e.,

—

{

Var

RE=Y—_,
Eu

in terms of N and pu.

(c) Explain how to estimate the relative error of u from outcomes xi,..., xy of
Xi,..., Xy, and how to construct a 95% confidence interval for u.

(d) An unbiased estimator Z of u is said to be logarithmically efficient if

InEZ>
lim ?nﬂz — 1. (3.36)

Show that the CMC estimator (3.35) with N = 1 is not logarithmically efficient.

18. One of the test cases in [70] involves the minimization of the Hougen function. Im-
plement a cross-entropy and a simulated annealing algorithm to carry out this optim-
ization task.



Monte Carlo Methods 119
19. In the binary knapsack problem, the goal is to solve the optimization problem:
T
retoay £
subject to the constraints
Ax < c,
where p and w are n X 1 vectors of non-negative numbers, A = (a;;) is an m X n
matrix, and ¢ is an m X 1 vector. The interpretation is that x; = 1 or O depending
on whether item j with value p; is packed into the knapsack or not, j = 1,...,n;
The variable a;; represents the i-th attribute (e.g., volume, weight) of the j-th item.
Associated with each attribute is a maximal capacity, e.g., ¢; could be the maximum
volume of the knapsack, ¢, the maximum weight, etc.
Write a CE program to solve the Sentol.dat knapsack problem at http://peop
le.brunel.ac.uk/~mastjjb/jeb/orlib/files/mknap2.txt, as described in
[16].
20. Let (Cy,Ry),(Cy,R;),... be a renewal reward process, with ER; < oo and
EC| < 0. Let A, = Zﬁ\i’l R;/t be the average reward at time ¢+ = 1,2,..., where
N, =max{n: T, < t} and we have defined 7, = >, C; as the time of the n-th re-
newal.
(a) Show that Tn/ng EC, as n — oo.
(b) Show that N,—> oo as  — oo.
(c) Show that N,/tg 1/EC, as t — oo. [Hint: Use the fact that 7y, <t < T, for
allt=1,2,....]
(d) Show that
a.s. ER] as f
—_— — — 0.
" T EC
21. Prove Theorem 3.3. = 92
22. Prove that if H(x) > 0 the importance sampling pdf g* in (3.22) gives the zero- = 06

23.

variance importance sampling estimator u = y.

Let X and Y be random variables (not necessarily independent) and suppose we wish
to estimate the expected difference u = E[X — Y] = EX — EY.

(a) Show that if X and Y are positively correlated, the variance of X — Y is smaller
than if X and Y are independent.

(b) Suppose now that X and Y have cdfs F and G, respectively, and are
simulated via the inverse-transform method: X = F~'(U), Y = G™'(V), with
U,V ~ U(0, 1), not necessarily independent. Intuitively, one might expect that
if U and V are positively correlated, the variance of X —Y would be smaller than
if U and V are independent. Show that this is not always the case by providing
a counter-example.


http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/mknap2.txt
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/mknap2.txt

120 Exercises

(c) Continuing (b), assume now that F' and G are continuous. Show that the vari-
ance of X — Y by taking common random numbers U = V is no larger than
when U and V are independent. [Hint: Use the following lemma of Hoeftfding
[41]: If (X, Y) have joint cdf H with marginal cdfs of X and Y being F and G,

respectively, then

Cov(X. Y) = f ) f " (H(x,y) - F( Gy)) dxdy,

provided Cov(X, Y) exists.]



CHAPTER 4

UNSUPERVISED LEARNING

When there is no distinction between response and explanatory variables, unsu-
pervised methods are required to learn the structure of the data. In this chapter we
look at various unsupervised learning techniques, such as density estimation, cluster-
ing, and principal component analysis. Important tools in unsupervised learning in-
clude the cross-entropy training loss, mixture models, the Expectation—Maximization
algorithm, and the Singular Value Decomposition.

4.1 Introduction

In contrast to supervised learning, where an “output” (response) variable y is explained by
an “input” (explanatory) vector x, in unsupervised learning there is no response variable
and the overall goal is to extract useful information and patterns from the data, e.g., in
the form 7 = {x;,...,x,} or as a matrix X" = [xy,...,x,]. In essence, the objective of
unsupervised learning is to learn about the underlying probability distribution of the data.

We start in Section 4.2 by setting up a framework for unsupervised learning that is
similar to the framework used for supervised learning in Section 2.3. That is, we formulate
unsupervised learning in terms of risk and loss minimization; but now involving the cross-
entropy risk, rather than the squared-error risk. In a natural way this leads to fundamental
learning concepts such as likelihood, Fisher information, and the Akaike information cri-
terion. Section 4.3 introduces the Expectation—-Maximization (EM) algorithm as a useful
method for maximizing likelihood functions when their solution cannot be found easily in
closed form.

If the data forms an iid sample from some unknown distribution, the “empirical dis-
tribution” of the data provides valuable information about the unknown distribution. In
Section 4.4 we formalize the concept of the empirical distribution (a generalization of the
empirical cdf) and explain how we can produce an estimate of the underlying probability
density function of the data using kernel density estimators.

Most unsupervised learning techniques focus on identifying certain traits of the under-
lying distribution, such as its local maximizers. A related idea is to partition the data into
clusters of points that are in some sense “similar” to each other. In Section 4.5 we formu-
late the clustering problem in terms of a mixture model. In particular, the data are assumed

121

= 11

5 135



122

Risk and Loss in Unsupervised Learning

= 204
1 251

= 23

= 25

CROSS-ENTROPY
RISK

to come from a mixture of (usually Gaussian) distributions, and the objective is to recover
the parameters of the mixture distributions from the data. The principal tool for parameter
estimation in mixture models is the EM algorithm.

Section 4.6 discusses a more heuristic approach to clustering, where the data are
grouped according to certain “cluster centers”, whose positions are found by solving an
optimization problem. Section 4.7 describes how clusters can be constructed in a hierarch-
ical manner.

Finally, in Section 4.8 we discuss the unsupervised learning technique called Principal
Component Analysis (PCA), which is an important tool for reducing the dimensionality of
the data.

We will revisit various unsupervised learning techniques in subsequent chapters on su-
pervised learning. For example, cross-entropy training loss minimization will be important
in logistic regression (Section 5.7) and classification (Chapter 7), and PCA can be used
for variable selection and dimensionality reduction, to make models easier to train and
increase their predictive power; see e.g., Sections 6.8 and 7.4.

4.2 Risk and Loss in Unsupervised Learning

In unsupervised learning, the training data 7 := {X,,..., X,,} only consists of (what are
usually assumed to be) independent copies of a feature vector X; there is no response
data. Suppose our objective is to learn the unknown pdf f of X based on an outcome
7 ={x1,...,x,} of the training data 7. Conveniently, we can follow the same line of reas-
oning as for supervised learning, discussed in Sections 2.3-2.5. Table 4.1 gives a summary
of definitions for the case of unsupervised learning. Compare this with Table 2.1 for the
supervised case.

Similar to supervised learning, we wish to find a function g, which is now a probability
density (continuous or discrete), that best approximates the pdf f in terms of minimizing a
risk

{(g) := ELoss(f(X), (X)), 4.1)
where Loss is a loss function. In (2.27), we already encountered the Kullback-Leibler risk
X
{(g) :=Eln fEX; =Eln f(X) — Eln g(X). 4.2)
8

If G i1s a class of functions that contains f, then minimizing the Kullback-Leibler risk over
G will yield the (correct) minimizer f. Of course, the problem is that minimization of (4.2)
depends on f, which is generally not known. However, since the term E In f(X) does not
depend on g, it plays no role in the minimization of the Kullback—Leibler risk. By removing
this term, we obtain the cross-entropy risk (for discrete X replace the integral with a sum):

{(g) = -Elng(X) = — f f(x) Ing(x) dx. (4.3)

Thus, minimizing the cross-entropy risk (4.3) over all g € G, again gives the minimizer
f, provided that f € G. Unfortunately, solving (4.3) is also infeasible in general, as it still



Unsupervised Learning

123

Table 4.1: Summary of definitions for unsupervised learning.

x Fixed feature vector.

X Random feature vector.

f(x) Pdf of X evaluated at the point x.

T Or T, Fixed training data {x;,i = 1,...,n}.

T or7, Random training data {X;,i = 1,...,n}.

g Approximation of the pdf f.

Loss(f(x), g(x)) Loss incurred when approximating f(x) with g(x).

{(g) Risk for approximation function g; that is, E Loss(f(X), g(X)).

g% Optimal approximation function in function class G; that is,
argmin,.; £(g).

t:(2) Training loss for approximation function (guess) g; that is,
the sample average estimate of {(g) based on a fixed training
sample 7.

{7 (g) The same as ¢.(g), but now for a random training sample 7 .

gorg, The learner: argmin, g €:(g). That is, the optimal approxima-
tion function based on a fixed training set 7 and function class
G. We suppress the superscript G if the function class is impli-
cit.

gg. or g The learner for a random training set 7.

depends on f. Instead, we seek to minimize the cross-entropy training loss:

1 n 1 n
£(g) = = 3" Loss(f(x).g(x) = = > Ing(x) (4.4)
i=1 i=1

over the class of functions G, where 7 = {x, ..., x,,} is an iid sample from f. This optimiz-
ation is doable without knowing f and is equivalent to solving the maximization problem

ma In g(x;). 4.5
geg"; g(x) (4.5)

A key step in setting up the learning procedure is to select a suitable function class G over
which to optimize. The standard approach is to parameterize g with a parameter 6 and let
G be the class of functions {g(: | #), 8 € O} for some p-dimensional parameter set ®. For the
remainder of Section 4.2, we will be using this function class, as well as the cross-entropy
risk.

The function @ — g(x|60) is called the likelihood function. It gives the likelihood of
the observed feature vector x under g(-|#), as a function of the parameter 6. The natural
logarithm of the likelihood function is called the log-likelihood function and its gradient
with respect to 6 is called the score function, denoted S(x | 8); that is,

9g(x16)

Jdlng(x|0) _
06 g(x10)

S(x1]0) := (4.6)

CROSS-ENTROPY
TRAINING LOSS

LIKELIHOOD
FUNCTION

SCORE FUNCTION



124

Risk and Loss in Unsupervised Learning

A

FISHER

INFORMATION
MATRIX

=" 398

INFORMATION
MATRIX EQUALITY

The random score S(X | 8), with X ~ g(-| ), is of particular interest. In many cases, its
expectation is equal to the zero vector; namely,

Jg(x16)
EeS(X | 6) = ¥ __ o(x|0)dx
g(x|0) @.7)
_ f@g(xl@)dx_ d[sxl®)dx a1
B 96 B 96 00

provided that the interchange of differentiation and integration is justified. This is true for
a large number of distributions, including the normal, exponential, and binomial distri-
butions. Notable exceptions are distributions whose support depends on the distributional
parameter; for example the U(0, #) distribution.

It is important to see whether expectations are taken with respect to X ~ g(-|8) or
X ~ f. We use the expectation symbols E4 and E to distinguish the two cases. )

From now on we simply assume that the interchange of differentiation and integration
is permitted; see, e.g., [76] for sufficient conditions. The covariance matrix of the random
score S(X |0) is called the Fisher information matrix, which we denote by F or F(0) to
show its dependence on 6. Since the expected score is 0, we have

F(O) = Ey[S(X|0)S(X|0)T]. 4.8)
A related matrix is the expected Hessian matrix of —In g(X | 6):
[?Ing(X|6) & IngX|6) = # lngX|0)]
026, 00100, 00,06,
PngX|0) FlngX|)  FlngX|6)
H(O) -=F _(9S(X|9) =_-FE 00,00, 026, 06,00, . (4'9)
o6 . . .
PngX|0) FlngX|e)  FlngX|6)
36,06, 46,00, 36,

Note that the expectation here is with respect to X ~ f. It turns out that if f = g(-|6), the
two matrices are the same; that is,

F(0) = H(0), (4.10)

provided that we may swap the order of differentiation and integration (expectation). This
result is called the information matrix equality. We leave the proof as Exercise 1.

The matrices F(6) and H(0) play important roles in approximating the cross-entropy
risk for large n. To set the scene, let g¢ = g(-|0") be the minimizer of the cross-entropy
risk

r(@) := -Elng(X|6).
We assume that r, as a function of 6, is well-behaved; in particular, that in the neighborhood
of 6" it is strictly convex and twice continuously differentiable (this holds true, for example,
if g is a Gaussian density). It follows that 8" is a root of E S(X | 8), because

o) _BElng(XIO*) _Ealng(XIO*)

0 00 00 00

=-ES(X16),



Unsupervised Learning

125

again provided that the order of differentiation and integration (expectation) can be
swapped. In the same way, H(0) is then the Hessian matrix of r. Let g(- | 6,) be the minim-
izer of the training loss

1 n
ry(6) = - Zlng(Xila),
i=1

where 7, = {X4,..., X} 1s a random training set. Let r* be the smallest possible cross-
entropy risk, taken over all functions; clearly, r* = —Eln f(X), where X ~ f. Similar to
the supervised learning case, we can decompose the generalization risk, €(g(-|6,)) = r(8,),
into

g(X16)

8(X16,)

r(0,) = r* + @) —r +r@,) - r6) = r(§) —Eln
—————
approx. error statistical error
The following theorem specifies the asymptotic behavior of the components of the gener-

. . . 7y ]P ol
alization risk. In the proof we assume that 8, — 6 as n — oo.

Theorem 4.1: Approximating the Cross-Entropy Risk

It holds asymptotically (n — oo) that

Er(8,) — r(0) ~ tr (F(e*) H—l(a*)) /(2n), 4.11)
where _
r(0") = Ery,(0,) + tr (F@) H™'(6)) /(2n). (4.12)

Proof: A Taylor expansion of r(b\n) around &" gives the statistical error

r(8,) - r(6") = (6, - 6" % %@ - 6)TH®,)(6, - "), (4.13)
N——

=0

where 6, lies on the line segment between 6" and 6,. For large n we may replace H(8,) with
H(6) as, by assumption, 6, converges to §*. The matrix H(6") is positive definite because
r(0) is strictly convex at §" by assumption, and therefore invertible. It is important to realize
that @, is in fact an M-estimator of €". In particular, in the notation of Theorem C.19, we
have y = S, A = H(6"), and B = F(6"). Consequently, by that same theorem,

Vi@, -6 -5 N(0.H™'(6") F(6") H™"(6)). (4.14)

Combining (4.13) with (4.14), it follows from Theorem C.2 that asymptotically the
expected estimation error is given by (4.11). .
Next, we consider a Taylor expansion of r (") around 6,,:

or- (6, 1 _ _ _
% +5(6" =0, Hr,@,)(6" ~0,). (4.15)
N —

=0

rr (@) = rr.(6,) + (6" = 6,)"

15 439

= 400

1 449

= 430



126

Risk and Loss in Unsupervised Learning

= 35

AKAIKE

INFORMATION
CRITERION

where Hf,-n(gn) = -1 Z - aS(X '0”) is the Hessian of r7, (6) at some 0, between 5,, and 6".
Taking expectations on both 51des of (4.15), we obtain

| — _ —
r(@*) = Ers,(6,) + EE o - BH)TH(;—H(HH)(H* -0,).

Replacing Hy, (6,) with H(6") for large n and using (4.14), we have
nE(6" - 9,) Hy,(6,)0 - 6,) — tr(F@O)H'(#)), n— .

Therefore, asymptotically as n — oo, we have (4.12). O

Theorem 4.1 has a number of interesting consequences:

1. Similar to Section 2.5.1, the training loss {7 (g7,) = rr, (@) tends to underestimate the
risk £(g%9) = r(6"), because the training set 7, is used to both train g € G (that is, estimate
6°) and to estimate the risk. The relation (4.12) tells us that on average the training loss
underestimates the true risk by tr(F(8*) H=1(6%))/(2n).

2. Adding equations (4.11) and (4.12), yields the following asymptotic approximation to
the expected generalization risk:

E r(6,) =~ Err(6,) + %tr (FoH™'(6)) (4.16)

The first term on the right-hand side of (4.16) can be estimated (without bias) via the
training loss rz,(6,). As for the second term, we have already mentioned that when the
true model f € G, then F(6") = H(#"). Therefore, when G is deemed to be a sufficiently
rich class of models parameterized by a p-dimensional vector €, we may approximate the
second term as tr(F(@)H1(6"))/n =~ tr(I,)/n = p/n. This suggests the following heuristic
approximation to the (expected) generalization risk:

Er(8,) ~ rr.(8,) + 5. (4.17)

3. Multiplying both sides of (4.16) by 2n and substituting tr (F(G*)H‘I(H*)) ~ p, we obtain
the approximation:
21 1(B,) ~ —2 Z Ing(X;|6,) + 2p. (4.18)
i=1
The right-hand side of (4.18) is called the Akaike information criterion (AIC). Just like
(4.17), the AIC approximation can be used to compare the difference in generalization risk

of two or more learners. We prefer the learner with the smallest (estimated) generalization
risk.

Suppose that, for a training set 7, the training loss r(6) has a unique minimum point

6 which lies in the interior of ©. If r7(0) is a differentiable function with respect to 6, then

we can find the optimal parameter 6 by solving

6r¢(0) ZS(X 19) =

ﬁ/—/
S7(6)




Unsupervised Learning

127

In other words, the maximum likelihood estimate 8 for 6 is obtained by solving the root of
the average score function, that is, by solving

S7(6) = 0. (4.19)

It is often not possible to find 6 in an explicit form. In that case one needs to solve the
equation (4.19) numerically. There exist many standard techniques for root-finding, e.g.,
via Newton’s method (see Section B.3.1), whereby, starting from an initial guess 6,, sub-
sequent iterates are obtained via the iterative scheme
01+1 = 01 + H;.I(OI) ST(H,),
where
- 0870 1<~ 90S(X:|0)
Hr0)=—F—=- ) ——F—
7 00 n 2, 6

i=1
is the average Hessian matrix of {—Ing(X;[6)}!,. Under f = g(-|0), the expectation of
Hy(0) is equal to the information matrix F(6), which does not depend on the data. This
suggests an alternative iterative scheme, called Fisher’s scoring method:

0t+l = 0[ + F_l(at) ST(Ot), (4-20)

which is not only easier to implement (if the information matrix can be readily evaluated),
but also is more numerically stable.

B Example 4.1 (Maximum Likelihood for the Gamma Distribution) We wish to ap-
proximate the density of the Gamma(a*, 1*) distribution for some true but unknown para-
meters @* and A", on the basis of a training set 7 = {xy,..., x,} of iid samples from this
distribution. Choosing our approximating function g(- | @, 4) in the same class of gamma

densities,
/l(yx(l—l e—/lx
s /1 = = > > 07
glad = "o,
with @ > 0 and 4 > 0, we seek to solve (4.19). Taking the logarithm in (4.21), the log-

likelihood function is given by

(4.21)

I(x|a,):=alnd—Inl'(@) + (¢ = 1)Inx — Ax.

It follows that )
InA—y(a)+Inx

x _
2 X

b

%l(x |, /l)}
Zi(x|a, )

S(a, ) = l

where i is the derivative of InI": the so-called digamma function. Hence,

awlXla ) gmlXle.] . [—¢1(a) 1 ]: [w'(?)

P X[, ) LUX|e, ) i -3

H(a, 1) = -E

SN
e——

a2 A

Fisher’s scoring method (4.20) can now be used to solve (4.19), with

|- y@)+n ' XL Inx;
ST(G’/$ /1) - [ % _ n—l Z?:l X;

and F(a, 1) = H(a, ). [ ]

NEWTON’S
METHOD

= 409

FISHER’S
SCORING METHOD

DIGAMMA
FUNCTION



128

Expectation—Maximization (EM) Algorithm

4.3 Expectation—Maximization (EM) Algorithm

The Expectation—Maximization algorithm (EM) is a general algorithm for maximization of
complicated (log-)likelihood functions, through the introduction of auxiliary variables.

the same symbol is used for different (conditional) probability densities.

c ( To simplify the notation in this section, we use a Bayesian notation system, where

LATENT
VARIABLES

COMPLETE-DATA
LIKELIHOOD

=42

As in the previous section, given independent observations 7 = {xy, ..., x,} from some
unknown pdf f, the objective is to find the best approximation to f in a function class
G = {g(-10), 0 € O} by solving the maximum likelihood problem:

0" = argmax g(7|6), (4.22)
6cO

where g(7]6) := g(x1]6)---g(x,|0). The key element of the EM algorithm is the aug-
mentation of the data T with a suitable vector of latent variables, z, such that

¢(r16) = f ot 210)dz.

The function 6 — g(t, z| ) is usually referred to as the complete-data likelihood function.
The choice of the latent variables is guided by the desire to make the maximization of
g(7, z| 8) much easier than that of g(7|8).

Suppose p denotes an arbitrary density of the latent variables z. Then, we can write:

Ing(r[6) = fp(z) Ing(r]6)dz

(. 210)/p(2)
= In[=—=—F""——=1|d
f Pl g(z|r,0)/p<z>) ?

:fp(z)ln g—(T’zla))dz—fp(z)ln(—g(le’a))dz
p(z) p(z)

- f p@n g(T’—zla))dz+@(p,g('lT, 0). 423)
p(z)

where D(p, g(-| 7, 0)) is the Kullback—Leibler divergence from the density p to g(-| 7, 6).
Since D > 0, it follows that

g(1,z10)
p(z)

for all @ and any density p of the latent variables. In other words, £(p, 6) is a lower bound
on the log-likelihood that involves the complete-data likelihood. The EM algorithm then
aims to increase this lower bound as much as possible by starting with an initial guess 6
and then, for r = 1, 2, .. ., solving the following two steps:

Ing(r|6) > fp(z) ln( )dz =: L(p,0)

1. p¥ = argmax, L(p, 6D,



Unsupervised Learning

129

2. Y = argmax,. L(p?, 0).

The first optimization problem can be solved explicitly. Namely, by (4.23), we have
that
p" = argmin D(p, g(-|7,60"")) = g(-|7,60").
p

That is, the optimal density is the conditional density of the latent variables given the data
7 and the parameter 8", The second optimization problem can be simplified by writing
L(p?,0) = 0(0) - E,» In p"(Z), where

0“(0) :=E,0lng(r,Z0)

is the expected complete-data log-likelihood under Z ~ p. Consequently, the maximiza-
tion of £(p”, @) with respect to @ is equivalent to finding

6" = argmax Q(0).
6cO

This leads to the following generic EM algorithm.

Algorithm 4.3.1: Generic EM Algorithm

input: Data 7, initial guess 8.

output: Approximation of the maximum likelihood estimate.

t—1

while a stopping criterion is not met do

3 Expectation Step: Find p(z) := g(z| 7,6 ") and compute the expectation

N =

0"(0) :=E,0Ing(r,Z16). (4.24)

4 | Maximization Step: Let 8 « argmax,.o 0“().
s | tet+l

6 return 07

A possible stopping criterion is to stop when

Ing(r|6") —Ing(x|§"D)| _
&
Ing(r|6")

for some small tolerance € > 0.

B Remark 4.1 (Properties of the EM Algorithm) The identity (4.23) can be used to
show that the likelihood g(7 | 0 does not decrease with every iteration of the algorithm.
This property is one of the strengths of the algorithm. For example, it can be used to debug
computer implementations of the EM algorithm: if the likelihood is observed to decrease
at any iteration, then one has detected a bug in the program.

The convergence of the sequence {6} to a global maximum (if it exists) is highly
dependent on the initial value #” and, in many cases, an appropriate choice of §” may not
be clear. Typically, practitioners run the algorithm from different random starting points
over O, to ascertain empirically that a suitable optimum is achieved. [ ]



130

Expectation—Maximization (EM) Algorithm

15 428

B Example 4.2 (Censored Data) Suppose the lifetime (in years) of a certain type of
machine is modeled via a N(u, 0%) distribution. To estimate x and o, the lifetimes of
n (independent) machines are recorded up to ¢ years. Denote these censored lifetimes
by xi,...,x,. The {x;} are thus realizations of iid random variables {X;}, distributed as
min{Y, c}, where Y ~ N(u, o?).

By the law of total probability (see (C.9)), the marginal pdf of each X can be written

as:
10 = D - pyfor) L2ETH 1o c oy 4 B pylor) hx = o,
P[Y<c] CD((C B IU)/O-) P[Y>c]

where ¢,2(-) is the pdf of the N(0, o) distribution, @ is the cdf of the standard normal
distribution, and @ := 1 — ®. It follows that the likelihood of the data v = {x;,...,x,} as a
function of the parameter 6 := [u, 0*]7 is:

=’ )

swlo)=[ | CXP(T;‘; x [ ] @~ wion.

Let n. be the total number of x; such that x; = c. Using n, latent variables z = [z1,...,2,.]",
we can write the joint pdf:

<Xt — )2 " (zi — )’
g(r,z|6) = —Z"X' (i = 1) _21_1(2 K )]l{m,inzi>c},

Qro2y2 P ( 202 202

so that f g(t,z|0)dz = g(7|6). We can thus apply the EM algorithm to maximize the like-
lihood, as follows.
For the E(xpectation)-step, we have for a fixed 6:

2zIt.0) = | | e@17.0),
i=1

where g(z|7,0) = 1{z > c} ¢, (z — ,u)/@((c — w)/o) is simply the pdf of the N(u, o?)
distribution, truncated to [c, o).

For the M(aximization)-step, we compute the expectation of the complete log-
likelihood with respect to a fixed g(z| 7, 8) and use the fact that Z,,...,Z, are iid:
SivecXi =) nEZ-p? n_ , n

202 - 202 - E Ino” - E ln(27r),
where Z has a N(u, o) distribution, truncated to [c, o). To maximize the last expression
with respect to u we set the derivative with respect to u to zero, and obtain:

_ n.EZ + Zi:x,-<c Xi
P .

Elng(r,Z|0) = -

Similarly, setting the derivative with respect to 0% to zero gives:

2 I’ZCE(Z - /'l)z + Zi:x,-<c(xi - /’l)z
" .

g

In summary, the EM iterates for t = 1, 2, ... are as follows.



Unsupervised Learning

131

E-step. Given the current estimate 6, := [u;, U?]T, compute the expectations v, := EZ and
2 = B(Z — u;)?, where Z ~ N(u,, 0?), conditional on Z > c; that is,

Vii= Ut o ———————
O((c = )/ o)

SDO'Z(C - lul)
=07 (1 +(c—u,)_’—).
O((c — uy)/oy)

M-step. Update the estimate to 6,1 := [t41, 0't2+1]T via the formulas:

neve + Zi:xi<c Xi
Ml = ———

n
o) nc‘:tz + Zi:xi<c(-xi - ,ut+1)2

O =

n

4.4 Empirical Distribution and Density Estimation

In Section 1.5.2.3 we saw how the empirical cdf F,, obtained from an iid training set
T ={xy,...,X,} from an unknown distribution on R, gives an estimate of the unknown cdf
F of this sampling distribution. The function F,isa genuine cdf, as it is right-continuous,
increasing, and lies between 0 and 1. The corresponding discrete probability distribution
is called the empirical distribution of the data. A random variable X distributed according
to this empirical distribution takes the values xi, ..., x, with equal probability 1/n. The
concept of empirical distribution naturally generalizes to higher dimensions: a random
vector X that is distributed according to the empirical distribution of x, ..., x,, has discrete
pdf P[X = x;] = 1/n,i = 1,...,n. Sampling from such a distribution — in other words
resampling the original data — was discussed in Section 3.2.4. The preeminent usage of
such sampling is the bootstrap method, discussed in Section 3.3.2.

In a way, the empirical distribution is the natural answer to the unsupervised learning
question: what is the underlying probability distribution of the data? However, the empir-
ical distribution is, by definition, a discrete distribution, whereas the true sampling distri-
bution might be continuous. For continuous data it makes sense to also consider estimation
of the pdf of the data. A common approach is to estimate the density via a kernel density
estimate (KDE), the most prevalent learner to carry this out is given next.

Definition 4.1: Gaussian KDE

Let xi,...,x, € RY be the outcomes of an iid sample from a continuous pdf f. A
Gaussian kernel density estimate of f is a mixture of normal pdfs, of the form

le=x;l?

I v 1
grn(x|0'):;ZWe W, x€eRY (4.25)
i=1

where o > 0 is called the bandwidth.

EMPIRICAL
DISTRIBUTION

GAUSSIAN

KERNEL DENSITY
ESTIMATE



132

Empirical Distribution and Density Estimation

We see that g, in (4.25) is the average of a collection of n normal pdfs, where each
normal distribution is centered at the data point x; and has covariance matrix o°I,;. A major
question is how to choose the bandwidth o so as to best approximate the unknown pdf f.
Choosing very small o will result in a “spiky” estimate, whereas a large o~ will produce
an over-smoothed estimate that may not identify important peaks that are present in the
unknown pdf. Figure 4.1 illustrates this phenomenon. In this case the data are comprised
of 20 points uniformly drawn from the unit square. The true pdf is thus 1 on [0, 1]* and O
elsewhere.

05 -05 ' 05 -05

Figure 4.1: Two two-dimensional Gaussian KDEs, with o = 0.01 (left) and o~ = 0.1 (right).

Let us write the Gaussian KDE in (4.25) as

n

gr,(x|0) = % > %qﬁ(x _ x"), (4.26)

i=1 o

where
llzli

1
#(z) = T e 2, zeR? 4.27)

is the pdf of the d-dimensional standard normal distribution. By choosing a different prob-
ability density ¢ in (4.26), satisfying ¢(x) = ¢(—x) for all x, we can obtain a wide variety
of kernel density estimates. A simple pdf ¢ is, for example, the uniform pdf on [-1, 1]¢:

-d _ d
¢(z):{2 . ifze[-1,179,

0, otherwise.

Figure 4.2 shows the graph of the corresponding KDE, using the same data as in Figure 4.1
and with bandwidth o = 0.1. We observe qualitatively similar behavior for the Gaussian
and uniform KDEs. As a rule, the choice of the function ¢ is less important than the choice
of the bandwidth in determining the quality of the estimate.

The important issue of bandwidth selection has been extensively studied for one-
dimensional data. To explain the ideas, we use our usual setup and let 7 = {xi,...,x,}
be the observed (one-dimensional) data from the unknown pdf f. First, we define the loss

function as
(f(x) ~ 8

Loss(f(x), g(x)) = f(x)

(4.28)



Unsupervised Learning

133

Figure 4.2: A two-dimensional uniform KDE, with bandwidth o = 0.1.

The risk to minimize is thus £(g) := E/Loss(f(X), g(X)) = f (f(x) — g(x))> dx. We bypass
the selection of a class of approximation functions by choosing the learner to be specified
by (4.25) for a fixed 0. The objective is now to find a o~ that minimizes the generalization
risk £(g.(-| o)) or the expected generalization risk E{(g7(-|0)). The generalization risk is
in this case

f(f(X) — g(x] o))’ dx = ffz(X) dx—2ff(X)gT(XI0) dx + fgf(XIO') dx.

Minimizing this expression with respect to o is equivalent to minimizing the last two terms,
which can be written as

i 2
_2Eng(X|a)+f{%z(lrgb(x;x")] dx.

i=1

This expression in turn can be estimated by using a test sample {x] ..., x,,} from f, yielding
the following minimization problem:

2% 1 v v 1 (x—x x—xj)
-— (] + = — dx,
min n’;g (il n2;;f02¢( o )¢( o o

1 X—Xj X=X;j 1 Xi—=xj\ - . .
where f =¢ (T) ¢ ( — ) dx = Eqﬁ( ﬁ;) in the case of the Gaussian kernel (4..27? with
d = 1. To estimate o in this way clearly requires a test sample, or at least an application of
cross-validation. Another approach is to minimize the expected generalization risk, (that

is, averaged over all training sets):

E f (f(x) = gr(x] o))’ dx.

= 38

This is called the mean integrated squared error (MISE). It can be decomposed into an  MEAN INTEGRATED

integrated squared bias and integrated variance component:

f (f(x) — Egs(x|0))* dx + f Var(gr(x| o)) dx.

SQUARED ERROR



134

Empirical Distribution and Density Estimation

(GAUSSIAN RULE
OF THUMB

THETA KDE

A typical analysis now proceeds by investigating how the MISE behaves for large n, under
various assumptions on f. For example, it is shown in [114] that, for 0 — 0 and no — oo,
the asymptotic approximation to the MISE of the Gaussian kernel density estimator (4.25)
(ford = 1) is given by |

|
o If"IF + ——, (4.29)
4 2n Nno?
where ||f”|I* := [(f”(x))* dx. The asymptotically optimal value of o~ is the minimizer
! 1/5
o= l—— . (4.30)
(2n \r ||f"||2)

To compute the optimal o* in (4.30), one needs to estimate the functional ||f”|]*. The
Gaussian rule of thumb is to assume that f is the density of the N(x, s°) distribution, where
X and s? are the sample mean and variance of the data, respectively [113]. In this case
Ilf”1> = s>n~'/23/8 and the Gaussian rule of thumb becomes:

s\1/5
Orot = (4_s) ~ 1.06 sn~'7°,
3n

We recommend, however, the fast and reliable theta KDE of [14], which chooses the
bandwidth in an optimal way via a fixed-point procedure. Figures 4.1 and 4.2 illustrate a
common problem with traditional KDEs: for distributions on a bounded domain, such as
the uniform distribution on [0, 1]?, the KDE assigns positive probability mass outside this
domain. An additional advantage of the theta KDE is that it largely avoids this boundary
effect. We illustrate the theta KDE with the following example.

B Example 4.3 (Comparison of Gaussian and theta KDEs) The following Python pro-
gram draws an iid sample from the Exp(1) distribution and constructs a Gaussian kernel
density estimate. We see in Figure 4.3 that with an appropriate choice of the bandwidth
a good fit to the true pdf can be achieved, except at the boundary x = 0. The theta KDE
does not exhibit this boundary effect. Moreover, it chooses the bandwidth automatically,
to achieve a superior fit. The theta KDE source code is available as kde . py on the book’s
GitHub site.

1.01 —— Gaussian KDE
—— Theta KDE

0.8 1 —-—- True density

0.6 A

0.4 4

0.2 1

0.0 4

0 1 2 3 4 5 6

Figure 4.3: Kernel density estimates for Exp(1)-distributed data.


https://github.com/DSML-book/Programs/blob/master/Chapter4/kde.py

Unsupervised Learning

135

gausthetakde.py

import matplotlib.pyplot as plt
import numpy as np
from kde import *

sig = 0.1; sig2 = sig**2; c¢ = 1/np.sqrt(2*np.pi)/sig #Constants
phi = lambda x,x0: np.exp(-(x-x0)**2/(2%*sig2)) #Unscaled Kernel
f = lambda x: np.exp(-x)*(x >= 0) # True PDF
n = 10**4 # Sample Size
X = -np.log(np.random.uniform(size=n))# Generate Data via IT method
XX = np.arange(-0.5,6,0.01, dtype = "d")# Plot Range
phis = np.zeros(len(xx))
for i in range(®,n):

phis = phis + phi(xx,x[i])
phis = c*phis/n
plt.plot(xx,phis, 'r')# Plot Gaussian KDE
[bandwidth,density,xmesh,cdf] = kde(x,2*%12,0,max(x))
idx = (xmesh <= 6)
plt.plot(xmesh[idx],density[idx])# Plot Theta KDE
plt.plot(xx,f(xx))# Plot True PDF

4.5 Clustering via Mixture Models

Clustering is concerned with the grouping of unlabeled feature vectors into clusters, such
that samples within a cluster are more similar to each other than samples belonging to
different clusters. Usually, it is assumed that the number of clusters is known in advance,
but otherwise no prior information is given about the data. Applications of clustering can
be found in the areas of communication, data compression and storage, database searching,
pattern matching, and object recognition.

A common approach to clustering analysis is to assume that the data comes from a mix-
ture of (usually Gaussian) distributions, and thus the objective is to estimate the parameters
of the mixture model by maximizing the likelihood function for the data. Direct optimiza-
tion of the likelihood function in this case is not a simple task, due to necessary constraints
on the parameters (more about this later) and the complicated nature of the likelihood func-
tion, which in general has a great number of local maxima and saddle-points. A popular
method to estimate the parameters of the mixture model is the EM algorithm, which was
discussed in a more general setting in Section 4.3. In this section we explain the basics of
mixture modeling and explain the workings of the EM method in this context. In addition,
we show how direct optimization methods can be used to maximize the likelihood.

4.5.1 Mixture Models

Let 7 := {Xy,...,X,} be iid random vectors taking values in some set X C R’ each X;
being distributed according to the mixture density

g(x10) = wigi(x) + -+ + wigdi(x), xe€X, (4.31)

5 128

MIXTURE DENSITY


https://github.com/DSML-book/Programs/tree/master/Chapter4/gausthetakde.py

136 Clustering via Mixture Models
where ¢, ..., ¢k are probability densities (discrete or continuous) on X, and the positive
WEIGHTS weights wy, ..., wg sum up to 1. This mixture pdf can be interpreted in the following way.
Let Z be a discrete random variable taking values 1,2, ..., K with probabilities wy, ..., wg,
and let X be a random vector whose conditional pdf, given Z = z, is ¢.. By the product rule
I 431 (C.17), the joint pdf of Z and X is given by

¢zx(2,%) = ¢2(2) dx 2(x |2) = w_ ¢.(x)

and the marginal pdf of X is found by summing the joint pdf over the values of z, which
gives (4.31). A random vector X ~ g can thus be simulated in two steps:

1. First, draw Z according to the probabilities P[Z = z] =w,, z=1,..., K.
2. Then draw X according to the pdf ¢;.

As 7 only contain the {X;} variables, the {Z;} are viewed as latent variables. We can inter-
pret Z; as the hidden label of the cluster to which X; belongs.

Typically, each ¢, in (4.31) is assumed to be known up to some parameter vector 7,. It
is customary! in clustering analysis to work with Gaussian mixtures; that is, each density
o1 1s Gaussian with some unknown expectation vector g, and covariance matrix X;. We
gather all unknown parameters, including the weights {w;}, into a parameter vector 6. As

usual, 7 = {xy,...,x,} denotes the outcome of 7. As the components of 7 are iid, their
(joint) pdf is given by
n n K
g1 = [ [atxilo) =[] D] weduxil e Zo). (4.32)
i=1

i=1 k=1

Following the same reasoning as for (4.5), we can estimate # from an outcome 7 by max-
imizing the log-likelihood function

n n K
(017) := ) Ingx;|6)= > In [Z Wi (x| g zk)) . (4.33)
i=1 i=1 k=1

However, finding the maximizer of /(@ | 7) is not easy in general, since the function is typ-
ically multiextremal.

B Example 4.4 (Clustering via Mixture Models) The data depicted in Figure 4.4 con-
sists of 300 data points that were independently generated from three bivariate normal
distributions, whose parameters are given in that same figure. For each of these three dis-
tributions, exactly 100 points were generated. Ideally, we would like to cluster the data into
three clusters that correspond to the three cases.

To cluster the data into three groups, a possible model for the data is to assume that
the points are iid draws from an (unknown) mixture of three 2-dimensional Gaussian dis-
tributions. This is a sensible approach, although in reality the data were not simulated
in this way. It is instructive to understand the difference between the two models. In the
mixture model, each cluster label Z takes the value {1, 2,3} with equal probability, and
hence, drawing the labels independently, the total number of points in each cluster would

'0Other common mixture distributions include Student t and Beta distributions.



Unsupervised Learning

137

4 .
cluster mean vector covariance matrix
2 L
| -4 2 14
0r 0 14 1.5
] 0.5 2 -0.95
N 2 [—1] [—0.95 1 ]
4 3 -1.5 2 0.1
-3 0.1 0.1

Figure 4.4: Cluster the 300 data points (left) into three clusters, without making any as-
sumptions about the probability distribution of the data. In fact, the data were generated
from three bivariate normal distributions, whose parameters are listed on the right.

be Bin(300, 1/3) distributed. However, in the actual simulation, the number of points in
each cluster is exactly 100. Nevertheless, the mixture model would be an accurate (al-
though not exact) model for these data. Figure 4.5 displays the “target” Gaussian mixture
density for the data in Figure 4.4; that is, the mixture with equal weights and with the exact
parameters as specified in Figure 4.4.

0.4

0.2

Figure 4.5: The target mixture density for the data in Figure 4.4.

In the next section we will carry out the clustering by using the EM algorithm. [ ]

4.5.2 EM Algorithm for Mixture Models

As we saw in Section 4.3, instead of maximizing the log-likelihood function (4.33) directly
from the data 7 = {xy, ..., x,}, the EM algorithm first augments the data with the vector of
latent variables — in this case the hidden cluster labels z = {zi, ..., z,}. The idea is that 7 is

DATA
AUGMENTATION



138

Clustering via Mixture Models

COMPLETE-DATA
LOG-LIKELIHOOD

only the observed part of the complete random data (77, Z), which were generated via the
two-step procedure described above. That is, for each data point X, first draw the cluster
label Z € {1,..., K} according to probabilities {w, ..., wg} and then, given Z = z, draw X
from ¢,. The joint pdf of 7 and Z is

85,2160 = | | ws ¢, (x),

i=1

which is of a much simpler form than (4.32). It follows that the complete-data log-
likelihood function

1017,2) = ) Inlw,, 6 (x))] (4.34)
i=1

is often easier to maximize than the original log-likelihood (4.33), for any given (7, z). But,
of course the latent variables z are not observed and so /(€| 7, z) cannot be evaluated. In the
E-step of the EM algorithm, the complete-data log-likelihood is replaced with the expect-
ation E, (0|1, Z), where the subscript p in the expectation indicates that Z is distributed
according to the conditional pdf of Z given 7~ = t; that is, with pdf

p(z) = g(z|7,0) x g(7,2|6). (4.35)

Note that p(z) is of the form p(z;) - - - p.(z,) so that, given 7 = 7, the components of Z are
independent of each other. The EM algorithm for mixture models can now be formulated
as follows.

Algorithm 4.5.1: EM Algorithm for Mixture Models

input: Data 7, initial guess 6.

output: Approximation of the maximum likelihood estimate.

11«1

2 while a stopping criterion is not met do

3 | Expectation Step: Find p®(z) := g(z|7,6"") and 0“(6) := E,0l(0]|7, Z).
4 | Maximization Step: Let ) «— argmax, Q' (6).

5 te—t+1

6 return 6%

A possible termination condition is to stop when |l(0(t) |7) — 1(0""" |T)| / |l(0(t) |T)| <e
for some small tolerance £ > 0. As was mentioned in Section 4.3, the sequence of log-
likelihood values does not decrease with each iteration. Under certain continuity con-
ditions, the sequence {#”} is guaranteed to converge to a local maximizer of the log-
likelihood I. Convergence to a global maximizer (if it exists) depends on the appropriate
choice for the starting value. Typically, the algorithm is run from different random starting
points.

For the case of Gaussian mixtures, each ¢y = ¢(- |y, Xx),k = 1,..., K is the density
of a d-dimensional Gaussian distribution. Let 8“~" be the current guess for the optimal
parameter vector, consisting of the weights {w,((’_l)}, mean vectors {,u,(:_l)}, and covariance
matrices {£""}. We first determine p® — the pdf of Z conditional on 7~ = 7 — for the
given guess 8~V As mentioned before, the components of Z given 7~ = 7 are independent,



Unsupervised Learning

139

so it suffices to specify the discrete pdf, pE’) say, of each Z; given the observed point X; = x;.
The latter can be found from Bayes’ formula:

Py o w{™V g | D), k=1, K (4.36)

Next, in view of (4.34), the function Q”() can be written as

0"(0) = By ) (Inwz, +1n ¢7(xi |z, 22)) = > Byo [Inwy, +1In ¢, (xi |y, )]
i=1 i=1
where the {Z;} are independent and Z; is distributed according to p?) in (4.36). This com-
pletes the E-step. In the M-step we maximize Q” with respect to the parameter 6; that is,
with respect to the {wy}, {i,}, and {£;}. In particular, we maximize

n K
D2 PG [Inwy + In g | 0]
i=1 k=1
under the condition 3, w; = 1. Using Lagrange multipliers and the fact that 35, pf.’)(k) =1
gives the solution for the {wy}:
1 n
we=— > plk), k=1,... K (4.37)
e
The solutions for g, and X; now follow from maximizing )}, pft)(k) In ¢ (x; | py., X)), lead-
ing to

n 6]
L op (k) x;
go= 2= i Ox (4.38)

P k)
and o
Y py (k) (e = ) (i — p)T

S p (k)
which are very similar to the well-known formulas for the MLEs of the parameters of a
Gaussian distribution. After assigning the solution parameters to 8“ and increasing the
iteration counter ¢ by 1, the steps (4.36), (4.37), (4.38), and (4.39) are repeated until con-
vergence is reached. Convergence of the EM algorithm is very sensitive to the choice of
initial parameters. It is therefore recommended to try various different starting conditions.
For a further discussion of the theoretical and practical aspects of the EM algorithm we
refer to [85].

B Example 4.5 (Clustering via EM) We return to the data in Example 4.4, depicted in
Figure 4.4, and adopt the model that the data is coming from a mixture of three bivariate
Gaussian distributions.

The Python code below implements the EM procedure described in Algorithm 4.5.1.
The initial mean vectors {y, } of the bivariate Gaussian distributions are chosen (from visual
inspection) to lie roughly in the middle of each cluster, in this case [-2,—-3]",[-4, 1]7, and
[0, —1]7. The corresponding covariance matrices are initially chosen as identity matrices,
which is appropriate given the observed spread of the data in Figure 4.4. Finally, the initial
weights are 1/3,1/3, 1/3. For simplicity, the algorithm stops after 100 iterations, which in
this case is more than enough to guarantee convergence. The code and data are available
from the book’s website in the GitHub folder Chapter4.

X =

, k=1,...,K, (4.39)


https://github.com/DSML-book/Programs/tree/master/Chapter4

140 Clustering via Mixture Models

EMclust.py

import numpy as np
from scipy.stats import multivariate_normal

Xmat = np.genfromtxt('clusterdata.csv', delimiter="',")
K =3
n, D = Xmat.shape

W = np.array([[1/3,1/3,1/311)

M = np.array([[-2.0,-4,0],[-3,1,-1]], dtype=np.float32)

# Note that if above *all* entries were written as integers, M would
# be defined to be of integer type, which will give the wrong answer
C = np.zeros((3,2,2))

C[:,0,0] =1

C[:,1,1] =1

p = np.zeros((3,300))

for i in range(0,100):

#E-step
for k in range(0,K):
mvn = multivariate_normal( M[:,k].T, C[k,:,:]1 )
plk,:] = W[O,k]*mvn.pdf(Xmat)
# M-Step
p = (p/sum(p,0)) #normalize
W = np.mean(p,1) .reshape(l,3)

for k in range(0,K):
M[:,k] = (Xmat.T @ p[k,:].T)/sum(p[k,:]1)
xm = Xmat.T - M[:,k].reshape(2,1)
Clk,:,:] = xm @ (xm*p[k,:]).T/sum(p[k,:]1)

The estimated parameters of the mixture distribution are given on the right-hand side
of Figure 4.6. After relabeling of the clusters, we can observe a close match with the
parameters in Figure 4.4.

The ellipses on the left-hand side of Figure 4.6 show a close match between the 95%
probability ellipses? of the original Gaussian distributions (in gray) and the estimated ones.
A natural way to cluster each point x; is to assign it to the cluster k for which the conditional
probability p;(k) is maximal (with ties resolved arbitrarily). This gives the clustering of the
points into red, green, and blue clusters in the figure.

For each mixture component, the contour of the corresponding bivariate normal pdf is shown that en-
closes 95% of the probability mass.


https://github.com/DSML-book/Programs/tree/master/Chapter4/EMclust.py

Unsupervised Learning

141

3.
27 weight mean vector covariance matrix
L o [ bR o
. 022 |Zoa|  |ods voy
I v I e

Figure 4.6: The results of the EM clustering algorithm applied to the data depicted in
Figure 4.4.

As an alternative to the EM algorithm, one can of course use continuous multiextremal
optimization algorithms to directly optimize the log-likelihood function /(6| 7) = In g(7 | 6)
in (4.33) over the set ® of all possible 6. This is done for example in [15], demonstrating
superior results to EM when there are few data points. Closer investigation of the likelihood
function reveals that there is a hidden problem with any maximum likelihood approach for
clustering if ® is chosen as large as possible — i.e., any mixture distribution is possible. To
demonstrate this problem, consider Figure 4.7, depicting the probability density function,
g(-10) of a mixture of two Gaussian distributions, where @ = [w,u;,07, r,05]" is the
vector of parameters for the mixture distribution. The log-likelihood function is given by
0]7) = Z?:l In g(x;|6), where xy, ..., x4 are the data (indicated by dots in the figure).

0.5}
04}
0.3+
0.2+

0.1

-4 -2 0 2 4 6 8

Figure 4.7: Mixture of two Gaussian distributions.

It is clear that by fixing the mixing constant w at 0.25 (say) and centering the first
cluster at x;, one can obtain an arbitrarily large likelihood value by taking the variance of
the first cluster to be arbitrarily small. Similarly, for higher dimensional data, by choosing
“point” or “line” clusters, or in general “degenerate” clusters, one can make the value of
the likelihood infinite. This is a manifestation of the familiar overfitting problem for the



142

Clustering via Vector Quantization

MANHATTAN
DISTANCE

MAXIMUM
DISTANCE

HamMmiING
DISTANCE

training loss that we already encountered in Chapter 2. Thus, the unconstrained maximiza-
tion of the log-likelihood function is an ill-posed problem, irrespective of the choice of the
optimization algorithm!

Two possible solutions to this “overfitting” problem are:

1. Restrict the parameter set © in such a way that degenerate clusters (sometimes called
spurious clusters) are not allowed.

2. Run the given algorithm and if the solution is degenerate, discard it and run the
algorithm afresh. Keep restarting the algorithm until a non-degenerate solution is
obtained.

The first approach is usually applied to multiextremal optimization algorithms and the
second is used for the EM algorithm.

4.6 Clustering via Vector Quantization

In the previous section we introduced clustering via mixture models, as a form of paramet-
ric density estimation (as opposed to the nonparametric density estimation in Section 4.4).
The clusters were modeled in a natural way via the latent variables and the EM algorithm
provided a convenient way to assign the cluster members. In this section we consider a
more heuristic approach to clustering by ignoring the distributional properties of the data.
The resulting algorithms tend to scale better with the number of samples # and the dimen-
sionality d.

In mathematical terms, we consider the following clustering (also called data segment-
ation) problem. Given a collection 7 = {xy,...,x,} of data points in some d-dimensional
space X, divide this data set into K clusters (groups) such that some loss function is min-
imized. A convenient way to determine these clusters is to first divide up the entire space
X, using some distance function dist(-, ) on this space. A standard choice is the Euclidean
(or L,) distance:

dist(x, x’) = |lx - x|| =

Other commonly used distance measures on R¢ include the Manhattan distance:

d
D i =]
i=1

and the maximum distance:

that is, the number of mismatched characters. For example, the Hamming distance between
010101 and 011010 is 4.



Unsupervised Learning

143

We can partition the space X into regions as follows: First, we choose K points
Ci,...,Ckg called cluster centers or source vectors. Foreachk =1,...,K, let

R = {x € X : dist(x, ¢;) < dist(x, ¢;) for all i # k}

be the set of points in X that lie closer to ¢, than any other center. The regions or cells
{R;} divide the space X into what is called a Voronoi diagram or a Voronoi tessellation.
Figure 4.8 shows a Voronoi tessellation of the plane into ten regions, using the Euclidean
distance. Note that here the boundaries between the Voronoi cells are straight line seg-
ments. In particular, if cell R; and R; share a border, then a point on this border must satisfy
lx — ¢ill = |lx — ¢/l|; that is, it must lie on the line that passes through the point (¢; + ¢;)/2
(that is, the midway point of the line segment between ¢; and ¢;) and be perpendicular to
c;—c.

-2 0 2 4

Figure 4.8: A Voronoi tessellation of the plane into ten cells, determined by the (red) cen-
ters.

Once the centers (and thus the cells {R;}) are chosen, the points in 7 can be clustered
according to their nearest center. Points on the boundary have to be treated separately. This
is a moot point for continuous data, as generally no data points will lie exactly on the
boundary.

The main remaining issue is how to choose the centers so as to cluster the data in some
optimal way. In terms of our (unsupervised) learning framework, we wish to approximate
a vector x via one of ¢y, ..., €k, using a piecewise constant vector-valued function

K
gx|C) = ) erlix e Ry,

k=1

where C is the d X K matrix [cy,..., ck]. Thus, g(x|C) = ¢, when x falls in region R, (we
ignore ties). Within this class G of functions, parameterized by C, our aim is to minimize
the training loss. In particular, for the squared-error loss, Loss(x, x’) = ||x—x’||?, the training

loss is
K

1 v 1
£(8C10) =~ ) - g OF =~ > > e~ el (4.40)
i=1

k=1 xeRyN1,

Thus, the training loss minimizes the average squared distance between the centers. This
framework also combines both the encoding and decoding steps in vector quantization

SOURCE VECTORS

VORONOI
TESSELLATION

VECTOR
QUANTIZATION



144

Clustering via Vector Quantization

CENTROIDS

[125]. Namely, we wish to “quantize” or “encode” the vectors in 7 in such a way that each
vector is represented by one of K source vectors cy, ..., €k, such that the loss (4.40) of this
representation is minimized.

Most well-known clustering and vector quantization methods update the vector of cen-
ters, starting from some initial choice and using iterative (typically gradient-based) proced-
ures. It is important to realize that in this case (4.40) is seen as a function of the centers,
where each point x is assigned to the nearest center, thus determining the clusters. It is well
known that this type of problem — optimization with respect to the centers — is highly
multiextremal and, depending on the initial clusters, gradient-based procedures tend to
converge to a local minimum rather than a global minimum.

4.6.1 K-Means

One of the simplest methods for clustering is the K-means method. It is an iterative method
where, starting from an initial guess for the centers, new centers are formed by taking
sample means of the current points in each cluster. The new centers are thus the centroids
of the points in each cell. Although there exist many different varieties of the K-means
algorithm, they are all essentially of the following form:

Algorithm 4.6.1: K-Means
input: Collection of points 7 = {xy, ..., x,}, number of clusters K, initial centers
Ci,...,Ck.
output: Cluster centers and cells (regions).
1 while a stopping criterion is not met do
2 Ri, ..., Rk < 0 (empty sets).
3 fori=1tondo
4 d « [dist(x;, ¢y),...,dist(x;, cx)] // distances to centers
5
6

k « argmin; d;
B R «— R, U {x;} // assign x; to cluster k
7 for k =1to K do
2ixer X
IRkl

9 return {c;}, {Ri}

8 Cp «— // compute the new center as a centroid of points

Thus, at each iteration, for a given choice of centers, each point in 7 is assigned to
its nearest center. After all points have been assigned, the centers are recomputed as the
centroids of all the points in the current cluster (Line 8). A typical stopping criterion is to
stop when the centers no longer change very much. As the algorithm is quite sensitive to
the choice of the initial centers, it is prudent to try multiple starting values, e.g., chosen
randomly from the bounding box of the data points.

We can see the K-means method as a deterministic (or “hard”) version of the probab-
ilistic (or “soft”) EM algorithm as follows. Suppose in the EM algorithm we have Gaus-
sian mixtures with a fixed covariance matrix X; = 02I;, k = 1,..., K, where ¢ should be
thought of as being infinitesimally small. Consider iteration ¢ of the EM algorithm. Having
obtained the expectation vectors ,ug D and weights wg_l), k=1,...,K, each point x; is as-
signed a cluster label Z; according to the probabilities pE’)(k), k=1,...,K given in (4.36).



Unsupervised Learning

145

But for 0> — 0 the probability distribution { pl(.t)(k)} becomes degenerate, putting all its
probability mass on argmin, ||x; — g ||*. This corresponds to the K-means rule of assigning
x; to its nearest cluster center. Moreover, in the M-step (4.38) each cluster center ug) is now
updated according to the average of the {x;} that have been assigned to cluster k. We thus

obtain the same deterministic updating rule as in K-means.

B Example 4.6 (K-means Clustering) We cluster the data from Figure 4.4 via K-means,
using the Python implementation below. Note that the data points are stored as a 300 x 2
matrix Xmat. We take the same starting centers as in the EM example: ¢; = [-2,-3]",¢; =
[-4,1]7, and ¢; = [0,—1]". Note also that squared Euclidean distances are used in the
computations, as these are slightly faster to compute than Euclidean distances (as no square
root computations are required) while yielding exactly the same cluster center evaluations.

import numpy as np

Xmat = np.genfromtxt('clusterdata.csv', delimiter=",")

K =3

n, D = Xmat.shape

¢ = np.array([[-2.0,-4,0],[-3,1,-1]]) #initialize centers

cold = np.zeros(c.shape)
dist2 = np.zeros((K,n))
while np.abs(c - cold).sum() > 0.001:
cold = c.copyQ)
for i in range(®,K): #compute the squared distances
dist2[i,:] = np.sum((Xmat - c[:,i].T)**2, 1)

label = np.argmin(dist2,0) #assign the points to nearest centroid
minvals = np.amin(dist2,0)
for i in range(®,K): # recompute the centroids

c[:,i] = np.mean(Xmat[np.where(label == i),:],1).reshape(1,2)

print('Loss = {:3.3f}'.format(minvals.mean()))

Loss = 2.288



https://github.com/DSML-book/Programs/tree/master/Chapter4/Kmeans.py

146

Clustering via Vector Quantization

=" 100

== 101

Figure 4.9: Results of the K-means algorithm applied to the data in Figure 4.4. The thick
black circles are the centroids and the dotted lines define the cell boundaries.

We found the cluster centers ¢; = [-1.9286, -3.0416]", ¢, = [-3.9237,0.0131]7, and
¢; = [0.5611,-1.2980]", giving the clustering depicted in Figure 4.9. The corresponding
loss (4.40) was found to be 2.288. [ |

4.6.2 Clustering via Continuous Multiextremal Optimization

As already mentioned, the exact minimization of the loss function (4.40) is difficult to
accomplish via standard local search methods such as gradient descent, as the function
is highly multimodal. However, nothing is preventing us from using global optimization
methods such as the CE or SCO methods discussed in Sections 3.4.2 and 3.4.3.

B Example 4.7 (Clustering via CE) We take the same data set as in Example 4.6 and
cluster the points via minimization of the loss (4.40) using the CE method. The Python
code below is very similar to the code in Example 3.16, except that now we are dealing
with a six-dimensional optimization problem. The loss function is implemented in the func-
tion Scluster, which essentially reuses the squared distance computation of the K-means
code in Example 4.6. The CE program typically converges to a loss of 2.287, correspond-
ing to the (global) minimizers ¢; = [-1.9286,-3.0416]", ¢, = [-3.8681,0.0456]", and
¢3 = [0.5880,—1.3526]", which slightly differs from the local minimizers for the K-means
algorithm.

clustCE.py

import numpy as np
np.set_printoptions(precision=4)

Xmat = np.genfromtxt('clusterdata.csv', delimiter=",")
K = 3
n, D = Xmat.shape

def Scluster(c):
n, D = Xmat.shape
dist2 = np.zeros((K,n))



https://github.com/DSML-book/Programs/tree/master/Chapter4/clustCE.py

Unsupervised Learning

147

cc = c.reshape(D,K)
for i in range(0,K):
dist2[i,:] = np.sum((Xmat - cc[:,i].T)**2, 1)
minvals = np.amin(dist2,0)
return minvals.mean()

numvar = K*D

mu = np.zeros(numvar) #initialize centers
sigma = np.ones(numvar) *2

rho = 0.1

N = 500; Nel = int(N*rho); eps = 0.001

func = Scluster

best_trj = np.array(numvar)
best_perf = np.Inf

trj = np.zeros(shape=(N,numvar))

while(np.max(sigma)>eps):
for i in range(0®,numvar):
trj[:,i] = (np.random.randn(N,1)*sigmal[i]+ mul[i]) .reshape(N,)
S = np.zeros(N)
for i in range(0,N):
S[i] = func(trj[i])

sortedids = np.argsort(S) # from smallest to largest
S_sorted = S[sortedids]

best_trj = np.array(n)

best_perf = np.Inf

eliteids = sortedids[range(®,Nel)]

eliteTrj = trj[eliteids,:]

mu = np.mean(eliteTrj,axis=0)

sigma = np.std(eliteTrj,axis=0)

if(best_perf>S_sorted[0]):
best_perf = S_sorted[0]
best_trj = trj[sortedids[0]]

print (best_perf)
print (best_trj.reshape(2,3))

2.2874901831572947
[[-3.9238 -1.8477 0.5895]
[ 0.0134 -3.0292 -1.2442]]

4.7 Hierarchical Clustering

It is sometimes useful to determine data clusters in a hierarchical manner; an example
is the construction of evolutionary relationships between animal species. Establishing a
hierarchy of clusters can be done in a bottom-up or a top-down manner. In the bottom-up
approach, also called agglomerative clustering, the data points are merged in larger and
larger clusters until all the points have been merged into a single cluster. In the top-down

AGGLOMERATIVE
CLUSTERING



148

Hierarchical Clustering

DIVISIVE
CLUSTERING

DENDROGRAM

LINKAGE

or divisive clustering approach, the data set is divided up into smaller and smaller clusters.
The left panel of Figure 4.10 depicts a hierarchy of clusters.

40+
3
930
©
®
020,
|
10+
— [ ]
7 8 6 1 2 3 4 5
Labels

Figure 4.10: Left: a cluster hierarchy of 15 clusters. Right: the corresponding dendrogram.

In Figure 4.10, each cluster is given a cluster identifier. At the lowest level are clusters
comprised of the original data points (identifiers 1,...,8). The union of clusters 1 and 2
form a cluster with identifier 9, and the union of 3 and 4 form a cluster with identifier 10.
In turn the union of clusters 9 and 10 constitutes cluster 12, and so on.

The right panel of Figure 4.10 shows a convenient way to visualize cluster hierarchies
using a dendrogram (from the Greek dendro for tree). A dendrogram not only summarizes
how clusters are merged or split, but also shows the distance between clusters, here on the
vertical axis. The horizontal axis shows which cluster each data point (label) belongs to.

Many different types of hierarchical clustering can be performed, depending on how
the distance is defined between two data points and between two clusters. Denote the data
setby X = {x;,i =1,...,n}. As in Section 4.6, let dist(x;, x;) be the distance between data
points x; and x ;. The default choice is the Euclidean distance dist(x;, x;) = |lx; — x/].

Let 7 and 7 be two disjoint subsets of {1,...,n}. These sets correspond to two disjoint
subsets (that is, clusters) of X: {x;,i = 7'} and {x;, j = J'}. We denote the distance between
these two clusters by d(Z, 7). By specifying the function d, we indicate how the clusters
are linked. For this reason it is also referred to as the /inkage criterion. We give a number
of examples:

¢ Single linkage. The closest distance between the clusters.

dmin(-[, j) = ier}l}g'] dist(xi, xj).

e Complete linkage. The furthest distance between the clusters.

dmax(I, j) = iel}l?exj diSt(xi’ xj)-

e Group average. The mean distance between the clusters. Note that this depends on

the cluster sizes. 1
dpoe I, 9) i= —— dist(x;, x ;).
L) = > )

ieI jeJ



Unsupervised Learning 149

For these linkage criteria, X is usually assumed to be R? with the Euclidean distance.
Another notable measure for the distance between clusters is Ward’s minimum vari-
ance linkage criterion. Here, the distance between clusters is expressed as the additional =~ WaRrD’S LINKAGE
amount of “variance” (expressed in terms of the sum of squares) that would be intro-
duced if the two clusters were merged. More precisely, for any set K of indices (labels) let
X5 = Drex Xi/|K| denote its corresponding cluster mean. Then

dwawd L, T) = D e =Frugl? = | Y i =% + ) ey = %gIP|. 44D

kelug iel €T

It can be shown (see Exercise 8) that the Ward linkage depends only on the cluster means
and the cluster sizes for 7 and J:

M11T1

dwaa( X, J) = ——— X7 — X7
'ward (L, ) |I|+|j|”xj xj||

t1ply1ng it by a factor of 2. In this way, the distance between one-point clusters {x;}

c In software implementations, the Ward linkage function is often rescaled by mul-
and {x;} is the squared Euclidean distance ||x; — x J||2

Having chosen a distance on X and a linkage criterion, a general agglomerative clus-
tering algorithm proceeds in the following “greedy” manner.

Algorithm 4.7.1: Greedy Agglomerative Clustering
input: Distance function dist, linkage function d, number of clusters K.
output: The label sets for the tree.
Initialize the set of cluster identifiers: 7 = {1,...,n}.
Initialize the corresponding label sets: £; = {i}, i € 1.
Initialize a distance matrix D = [d;;] with d;; = d({i}, {j}).
fork=n+1to2n-Kdo
Find i and j > i in 7 such that d;; is minimal.
Create a new label set £ := £; U L;.
Add the new identifier k to 7 and remove the old identifiers i and j from 7.
Update the distance matrix D with respect to the identifiers i, j, and k.

return £;,i=1,...,2n—- K

W N R W N =

-]

Initially, the distance matrix D contains the (linkage) distances between the one-point
clusters containing one of the data points x, ..., x,, and hence with identifiers 1,...,n.
Finding the shortest distance amounts to a table lookup in D. When the closest clusters
are found, they are merged into a new cluster, and a new identifier k (the smallest positive
integer that has not yet been used as an identifier) is assigned to this cluster. The old iden-
tifiers i and j are removed from the cluster identifier set 7. The matrix D is then updated
by adding a k-th column and row that contain the distances between k and any m € 7. This
updating step could be computationally quite costly if the cluster sizes are large and the
linkage distance between the clusters depends on all points within the clusters. Fortunately,
for many linkage functions, the matrix D can be updated in an efficient manner.



150

Hierarchical Clustering

LANCE—
WILLIAMS

LINKAGE MATRIX

Suppose that at some stage in the algorithm, clusters 7 and 7, with identifiers i and j,
respectively, are merged into a cluster K = 7 U J with identifier k. Let M, with identifier
m, be a previously assigned cluster. An update rule of the linkage distance dy,, between K
and M is called a Lance—Williams update if it can be written in the form

dkm = a’dim +ﬁdjm +7dij +6|dim _djmla

where a, ..., depend only on simple characteristics of the clusters involved, such as the
number of elements within the clusters. Table 4.2 shows the update constants for a number
of common linkage functions. For example, for single linkage, d;,, is the minimal distance
between 7 and M, and d, is the minimal distance between J and M. The smallest of
these is the minimal distance between K and M. That is, dy, = min{d;y, d;n} = din/2 +
djm/2 = |dim, — djml /2.

Table 4.2: Constants for the Lance—Williams update rule for various linkage functions,
with n;, nj, n,, denoting the number of elements in the corresponding clusters.

Linkage a B Y 0

Single 1/2 1/2 0 -1/2

Complete 1/2 1/2 0 1/2

Group avg. i e 0 0
ni+n; n; 1‘ n;

Ward n; + ny, n; n 0

ni+nj+n, n+nj+n, n+nj+n,

In practice, Algorithm 4.7.1 is run until a single cluster is obtained. Instead of returning
the label sets of all 2n — 1 clusters, a linkage matrix is returned that contains the same
information. At the end of each iteration (Line 8) the linkage matrix stores the merged
labels i and j, as well as the (minimal) distance d;;. Other information such as the number
of elements in the merged cluster can also be stored. Dendrograms and cluster labels can be
directly constructed from the linkage matrix. In the following example, the linkage matrix

is returned by the method agg_cluster.

B Example 4.8 (Agglomerative Hierarchical Clustering) The Python code below gives
a basic implementation of Algorithm 4.7.1 using the Ward linkage function. The methods
fcluster and dendrogram from the scipy module can be used to identify the labels in
a cluster and to draw the corresponding dendrogram.

AggCluster.py

import numpy as np
from scipy.spatial.distance import cdist

def update_distances(D,i,j, sizes): # distances for merged cluster
n = D.shape[0]
d = np.inf * np.ones(n+1)
for k in range(n): # Update distances
d[k] = ((sizes[i]+sizes[k])*D[i,k] +
(sizes[j]+sizes[k])*D[],k] -



https://github.com/DSML-book/Programs/tree/master/Chapter4/AggCluster.py

Unsupervised Learning

151

sizes[k]*D[i,j])/(sizes[i] + sizes[j] + sizes[k])

infs = np.inf * np.ones(n) # array of infinity
p[i,:]1,D[:,i]1,D[j,:1,D[:,j] = infs,infs,infs,infs # deactivate
new_D = np.inf * np.ones((n+1,n+1))

new_D[0:n,0:n] = D # copy old matrix into new_D

new_D[-1,:], new_D[:,-1] = d,d # add new row and column

return new_D

def agg_cluster(X):
n = X.shape[0]
sizes = np.ones(n)
D = cdist(X, X,metric = 'sqeuclidean') # initialize dist. matrix

np.fill_diagonal (D, np.inf * np.ones(D.shape[0]))
Z = np.zeros((n-1,4)) #linkage matrix encodes hierarchy tree
for t in range(n-1):
i,j = np.unravel_index(D.argmin(), D.shape) # minimizer pair
sizes = np.append(sizes, sizes[i] + sizes[j])
Z[t,:]=np.array([i, j, np.sqrt(D[i,j]), sizes[-1]11)
D = update_distances(D, i,j, sizes) # update distance matr.
return Z

import scipy.cluster.hierarchy as h

X
z

np.genfromtxt('clusterdata.csv',delimiter=","') # read the data
agg_cluster(X) # form the linkage matrix

h.dendrogram(Z) # SciPy can produce a dendrogram from Z
# fcluster function assigns cluster ids to all points based on Z
cl = h.fcluster(Z, criterion = 'maxclust', t=3)

import matplotlib.pyplot as plt

plt. figure(2), plt.clfQ

cols = ['red','green', 'blue']

colors = [cols[i-1] for i in cl]
plt.scatter(X[:,0], X[:,1],c=colors)

plt.show()

Note that the distance matrix is initialized with the squared Euclidean distance, so that
the Ward linkage is rescaled by a factor of 2. Also, note that the linkage matrix stores
the square root of the minimal cluster distances rather than the distances themselves. We
leave it as an exercise to check that by using these modifications the results agree with the
linkage method from scipy; see Exercise 9. [ |

In contrast to the bottom-up (agglomerative) approach to hierarchical clustering, the
divisive approach starts with one cluster, which is divided into two clusters that are as
“dissimilar” as possible, which can then be further divided, and so on. We can use the same
linkage criteria as for agglomerative clustering to divide a parent cluster into two child
clusters by maximizing the distance between the child clusters. Although it is a natural to try
to group together data by separating dissimilar ones as far as possible, the implementation
of this idea tends to scale poorly with n. The problem is related to the well-known max-cut
problem: given an n X n matrix of positive costs ¢;j, i, j € {1,...,n}, partition the index set

MAX-CUT
PROBLEM



152

Hierarchical Clustering

=111

I ={1,...,n}into two subsets J and K such that the total cost across the sets, that is,

5

JjeT keK

is maximal. If instead we maximize according to the average distance, we obtain the group
average linkage criterion.

B Example 4.9 (Divisive Clustering via CE) The following Python code is used to di-
vide a small data set (of size 300) into two parts according to maximal group average link-
age. It uses a short cross-entropy algorithm similar to the one presented in Example 3.19.
Given a vector of probabilities {p;,i = 1,...,n}, the algorithm generates an n X n matrix
of Bernoulli random variables with success probability p; for column i. For each row, the
Os and 1s divide the index set into two clusters, and the corresponding average linkage
distance is computed. The matrix is then sorted row-wise according to these distances. Fi-
nally, the probabilities {p;} are updated according to the mean values of the best 10% rows.
The process is repeated until the {p;} degenerate to a binary vector. This then presents the
(approximate) solution.

clustCE2.py

import numpy as np

from numpy import genfromtxt

from scipy.spatial.distance import squareform
from scipy.spatial.distance import pdist
import matplotlib.pyplot as plt

def S(x,D):
Vl = np.where(x==0)[0] # {V1,V2} is the partition
V2 = np.where(x==1) [0]
tmp = D[V1]
tmp = tmp[:,V2]
return np.mean(tmp) # the size of the cut

def maxcut(D,N,eps,rho,alpha):
n = D.shape[1]
Ne = int(rho*N)
p = 1/2*np.ones(n)
pl[0®] = 1.0
while (np.max(np.minimum(p,np.subtract(l,p))) > eps):
X = np.array(np.random.uniform(®,1,(N,n))<=p, dtype=np.int64)
sXx = np.zeros(N)
for i in range(N):
sx[i] = S(x[i],D)

sortSX = np.flip(np.argsort(sx))

#print ("gamma = ",sx[sortSX[Ne-1]], " best=",sx[sortSX[0]])
elIds = sortSX[0:Ne]

elites = x[ellds]

pnew = np.mean(elites, axis=0)

p = alpha*pnew + (l1.0-alpha)*p



https://github.com/DSML-book/Programs/tree/master/Chapter4/clustCE2.py

Unsupervised Learning

153

return np.round(p)

Xmat = genfromtxt('clusterdata.csv', delimiter=',")
n = Xmat.shape[0]

D = squareform(pdist(Xmat))

N = 1000

eps = 10*%*-2

rho = 0.1

alpha = 0.9

# CE
pout = maxcut(D,N,eps,rho, alpha);

cutval = S(pout,D)
print("cutvalue ",cutval)

#plot

V1l = np.where(pout==0) [0]

xblue = Xmat[V1]

V2 = np.where(pout==1) [0]

xred = Xmat[V2]
plt.scatter(xblue[:,0],xbluel[:,1], c="blue")
plt.scatter(xred[:,0],xred[:,1], c="red")

cutvalue 4.625207676517948

3 °
2 o, ®
1 0:2' " ° e
°
.;\;’hcft..‘:Cbo oo
O Ltk Y .

SR LA M LT
® ° .’....'.
-2 o s . d; ‘e °

° o9 &
-3 ..o.:‘.é~ . 5... e o
-4 ° o
-6 -4 2 0 2 4

Figure 4.11: Division of the data in Figure 4.4 into two clusters, via the cross-entropy
method.

4.8 Principal Component Analysis (PCA)

The main idea of principal component analysis (PCA) is to reduce the dimensionality of
a data set consisting of many variables. PCA is a feature reduction (or feature extraction)

PRINCIPAL

COMPONENT
ANALYSIS



154 Principal Component Analysis (PCA)
mechanism, that helps us to handle high-dimensional data with more features than is con-
venient to interpret.

4.8.1 Motivation: Principal Axes of an Ellipsoid
Consider a d-dimensional normal distribution with mean vector 0 and covariance matrix
= 46 X. The corresponding pdf (see (2.33)) is
1 1 Ty-1
fx)=————=e2*"* ", xeR%
V@) x|
If we were to draw many iid samples from this pdf, the points would roughly have an
=71 ellipsoid pattern, as illustrated in Figure 3.1, and correspond to the contours of f: sets of
points x such that x"X7'x = ¢, for some ¢ > 0. In particular, consider the ellipsoid
xXlx=1, xeR% (4.42)
= 373 Let ¥ = BBT, where B is for example the (lower) Cholesky matrix. Then, as explained
= 366 in Example A.5, the ellipsoid (4.42) can also be viewed as the linear transformation of

PRINCIPAL AXES

SINGULAR VALUE
DECOMPOSITION

05 378

PRINCIPAL
COMPONENTS

I 362

d-dimensional unit sphere via matrix B. Moreover, the principal axes of the ellipsoid can
be found via a singular value decomposition (SVD) of B (or X); see Section A.6.5 and
Example A.8. In particular, suppose that an SVD of B is

B =UDV' (note that an SVD of X is then UD?U™).

The columns of the matrix UD correspond to the principal axes of the ellipsoid, and the
relative magnitudes of the axes are given by the elements of the diagonal matrix D. If some
of these magnitudes are small compared to the others, a reduction in the dimension of the
space may be achieved by projecting each point x € R? onto the subspace spanned by the
main (say k < d) columns of U — the so-called principal components. Suppose without
loss of generality that the first k principal components are given by the first k£ columns of
U, and let U, be the corresponding d X k matrix.

With respect to the standard basis {e;}, the vector x = x;e; + - - - + x4e, is represented by
the d-dimensional vector [xi, ..., x;]". With respect to the orthonormal basis {u;} formed
by the columns of matrix U, the representation of x is U'x. Similarly, the projection of
any point x onto the subspace spanned by the first k principal vectors is represented by the
k-dimensional vector U] x, with respect to the orthonormal basis formed by the columns of
Uy. So, the idea is that if a point x lies close to its projection U, U] x, we may represent it via
k numbers instead of d, using the combined features given by the k principal components.
See Section A.4 for a review of projections and orthonormal bases.

B Example 4.10 (Principal Components) Consider the matrix

14 8 3
=18 5 2,
3 21
which can be written as X = BB", with
1 2 3
B=|0 1 2



Unsupervised Learning

155

Figure 4.12 depicts the ellipsoid x"X~'x = 1, which can be obtained by linearly transform-
ing the points on the unit sphere by means of the matrix B. The principal axes and sizes of
the ellipsoid are found through a singular value decomposition B = UDV", where U and
D are

0.8460 0.4828 0.2261
U=104973 -0.5618 -0.6611| and D=
0.1922 -0.6718 0.7154

0 0.7187 0
0 0 0.3160

4.4027 0 0 }

The columns of U show the directions of the principal axes of the ellipsoid, and the di-
agonal elements of D indicate the relative magnitudes of the principal axes. We see that
the first principal component is given by the first column of U, and the second principal
component by the second column of U.

The projection of the point x = [1.052,0.6648,0.2271]" onto the 1-dimensional space
spanned by the first principal component u; = [0.8460,0.4972,0.1922]" is z = uju x =
[1.0696,0.6287,0.2429]". With respect to the basis vector u,, z is represented by the num-
beru{z = 1.2643. That is, z = 1.2643u,.

1

Figure 4.12: A “surfboard” ellipsoid where one principal axis is significantly larger than
the other two.

4.8.2 PCA and Singular Value Decomposition (SVD)

In the setting above, we did not consider any data set drawn from a multivariate pdf f. The
whole analysis rested on linear algebra. In principal component analysis (PCA) we start
with data x,...,x,, where each x is d-dimensional. PCA does not require assumptions
how the data were obtained, but to make the link with the previous section, we can think
of the data as iid draws from a multivariate normal pdf.

Let us collect the data in a matrix X in the usual way; that is,

T

X111 X122 ... Xiq x1
T
X211 X220 ... Xpg x2

X=. . . .|=

Xnl Xn2 oo Xpd X

PRINCIPAL
COMPONENT
ANALYSIS

= 44



156

Principal Component Analysis (PCA)

I 362

The matrix X will be the PCA’s input. Under this setting, the data consists of points in d-
dimensional space, and our goal is to present the data using n feature vectors of dimension
k<d.

In accordance with the previous section, we assume that underlying distribution of the
data has expectation vector 0. In practice, this means that before PCA 1is applied, the data
needs to be centered by subtracting the column mean in every column:

4 f— ‘.—_.
Xij = Xij = X

= _ 1vyn
where X; = r—lzl-zl Xij-

We assume from now on that the data comes from a general d-dimensional distribution
with mean vector 0 and some covariance matrix X. The covariance matrix X is by definition
equal to the expectation of the random matrix XX ', and can be estimated from the data
xy,...,X, via the sample average

As X is a covariance matrix, we may conduct the same analysis for ¥ as we did for X in the
previous section. Specifically, suppose £ = UD?UT is an SVD of X and let U, be the matrix
whose columns are the & principal components; that is, the k columns of U corresponding to
the largest diagonal elements in D?. Note that we have used D? instead of D to be compat-
ible with the previous section. The transformation z; = U, U] x; maps each vector x; € R4
(thus, with d features) to a vector z; € R lying in the subspace spanned by the columns of
Uy.. With respect to this basis, the point z; has representation z; = U] (U, U x;) = U] x; € Rk
(thus with k features). The corresponding covariance matrix of the z;,i = 1,...,n is diag-
onal. The diagonal elements {d,,} of D can be interpreted as standard deviations of the data
in the directions of the principal components. The quantity v = )., d;, (that is, the trace of
D?) is thus a measure for the amount of variance in the data. The proportion d,/v indicates

how much of the variance in the data is explained by the ¢-th principal component.

Another way to look at PCA is by considering the question: How can we best project the
data onto a k-dimensional subspace in such a way that the total squared distance between
the projected points and the original points is minimal? From Section A.4, we know that
any orthogonal projection to a k-dimensional subspace V. can be represented by a matrix
U,U;, where Uy = [u,...,u;] and the {u,, £ = 1,..., k} are orthogonal vectors of length 1
that span V. The above question can thus be formulated as the minimization program:

uy,.. g

min " [fx; - UU i (4.43)
i=1



Unsupervised Learning 157
Now observe that
1< 1 ¢
- xi— U U x| = - x| —x/ U U (x; — U U/ x;
n;n Ul x| nZ( TUUD(xi - U x)
1 n 1 n 1 n k
== |kl == ¥ UU x;=c—— tr(x] ueu; x;)
———
1 k n k .
- Ty T - T
=c nz . U, XiX; Uy = Zuf Xuy,
=1 i=1 =1
where we have used the cyclic property of a trace (Theorem A.1) and the fact that U, U/ 15 357

can be written as Z/{f:] ugu;. It follows that the minimization problem(4.43) is equivalent
to the maximization problem

k
max Z u;, Tuy. (4.44)
uy,... Uy
=1
This maximum can be at most z’gzl d?e and is attained precisely when u;, ..., u; are the

first k principal components of X.

B Example 4.11 (Singular Value Decomposition) The following data set consists of in-
dependent samples from the three-dimensional Gaussian distribution with mean vector 0
and covariance matrix X given in Example 4.10:

[ 3.1209  1.7438  0.5479 ]
-2.6628 -1.5310 -0.2763
3.7284 3.0648  1.8451
0.4203  0.3553  0.4268
X = -0.7155 -0.6871 -0.1414
5.8728  4.0180 1.4541 |-
4.8163 24799  0.5637
2.6948 1.2384 0.1533
-1.1376 -0.4677 -0.2219
[—1.2452 -0.9942 -0.4449]

After replacing X with its centered version, an SVD UD?*UT of T = X"X/n yields the
principal component matrix U and diagonal matrix D:

-0.8277 0.4613 0.3195 3.3424 0 0
U =]-0.5300 -0.4556 -0.7152( and D=| O 0.4778 0
-0.1843 -0.7613 0.6216 0 0 0.1038

We also observe that, apart from the sign of the first column, the principal component
matrix U is similar to that in Example 4.10. Likewise for the matrix D. We see that 97.90%
of the total variance is explained by the first principal component. Figure 4.13 shows the
projection of the centered data onto the subspace spanned by this principal component.



158 Principal Component Analysis (PCA)

Figure 4.13: Data from the “surfboard” pdf is projected onto the subspace spanned by the
largest principal component.

The following Python code was used.

PCAdat.py

import numpy as np
X = np.genfromtxt('pcadat.csv', delimiter=",")
X.shape[0]

=}
1l

X X - X.mean(axis=0)
G =X.T @aX
U, _ , _ = np.linalg.svd(G/n)

# projected points
Y =X @ np.outer(U[:,0],U[:,0]1)

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()

ax = fig.add_subplot (111, projection='3d")
ax.w_xaxis.set_pane_color((0, 0, 0, 0))
ax.plot(Y[:,0], Y[:,1], Y[:,2], c="k', linewidth=1)
ax.scatter(X[:,0], X[:,1], X[:,2], c="b")
ax.scatter(Y[:,0]1, Y[:,1], Y[:,2], c="'r")

for i in range(n):
ax.plot([X[i,0], Y[i,0]1], [X[i,1],Y[i,1]], [X[i,2],Y[i,2]], 'b")

ax.set_xlabel('x")
ax.set_ylabel('y")
ax.set_zlabel('z")
plt.show ()

Next is an application of PCA to Fisher’s famous data set, already mentioned in
S Section 1.1, and Exercise 1.5.


https://github.com/DSML-book/Programs/tree/master/Chapter4/PCAdat.py

Unsupervised Learning

159

B Example 4.12 (PCA for the Iris Data Set) The data set contains measurements
on four features of the iris plant: sepal length and width, and petal length and width, for a
total of 150 specimens. The full data set also contains the species name, but for the purpose
of this example we ignore it.

Figure 1.9 shows that there is a significant correlation between the different features.
Can we perhaps describe the data using fewer features by taking certain linear combin-
ations of the original features? To investigate this, let us perform a PCA, first centering
the data. The following Python code implements the PCA. It is assumed that a CSV file
irisX.csv has been made that contains the iris data set (without the species information).

PCAiris.py

import seaborn as sns, numpy as np
np.set_printoptions(precision=4)

X
n
X

np.genfromtxt('IrisX.csv',delimiter=",")
X.shape[0]
X - np.mean(X, axis=0)

[U,D2,UT]
print('U

np.linalg.svd((X.T @ X)/n)
\n', U); print('\n diag(D*2) = ', D2)

z = U[:,0].T @ X.T

sns.kdeplot(z, bw=0.15)

U =
[[-0.3614 -0.6566 0.582 0.3155]
[ 0.0845 -0.7302 -0.5979 -0.3197]
[-0.8567 0.1734 -0.0762 -0.4798]
[-0.3583 0.0755 -0.5458 0.7537]]

diag(D42) = [4.2001 0.2411 0.0777 0.0237]

The output above shows the principal component matrix (which we called U) as well as
the diagonal of matrix D?. We see that a large proportion of the variance, 4.2001/(4.2001 +
0.2411+4+0.0777+0.0237) = 92.46%, 1s explained by the first principal component. Thus, it
makes sense to transform each data point x € R* to u] x € R. Figure 4.14 shows the kernel
density estimate of the transformed data. Interestingly, we see two modes, indicating at
least two clusters in the data.

= 17


https://github.com/DSML-book/Programs/tree/master/Chapter4/PCAiris.py

160

Exercises

QUOTIENT RULE
FOR
DIFFERENTIATION

0.6

0.4r

kernel density estimate

-4 -3 -2 -1 0 1 2 3 4
PCA-combined data

Figure 4.14: Kernel density estimate of the PCA-combined data.

Further Reading

Various information-theoretic measures to quantify uncertainty, including the Shannon en-
tropy and Kullback—Leibler divergence, may be found in [28]. The Fisher information, the
prominent information measure in statistics, is discussed in detail in [78]. Akaike’s inform-
ation criterion appeared in [2]. The EM algorithm was introduced in [31] and [85] gives an
in-depth treatment. Convergence proofs for the EM algorithm may be found in [19, 128].
A classical reference on kernel density estimation is [113], and [14] is the main reference
for the theta kernel density estimator. Theory and applications on finite mixture models
may be found in [86]. For more details on clustering applications and algorithms as well
as references on data compression, vector quantization, and pattern recognition, we refer
to [1, 35, 107, 125]. A useful modification of the K-means algorithm is the fuzzy K-means
algorithm; see, e.g., [9]. A popular way to choose the starting positions in K-means is given
by the K-means++ heuristic, introduced in [4].

Exercises

1. This exercise is to show that the Fisher information matrix F(0) in (4.8) is equal to the
matrix H(0) in (4.9), in the special case where f = g(-|#), and under the assumption that
integration and differentiation orders can be interchanged.

(a) Let h be a vector-valued function and k a real-valued function. Prove the following
quotient rule for differentiation:
0[h(0)/k(0)] 1 0h(0) 1 0k(0)

90 k@) 90  kX0) 00 h(6). (4.45)

(b) Now take h(0) = W and k(@) = g(X|0) in (4.45) and take expectations with

respect to Ey on both sides to show that

1 aﬁg(g;lb’)
-H(0) = Ey L’(XW) 50 ]—F(G).

A



Unsupervised Learning

161

(c) Finally show that A is the zero matrix.

2. Plot the mixture of N(0, 1), U(0, 1), and Exp(1) distributions, with weights w; = w, =
w3 = 1/3

3. Denote the pdfs in Exercise 2 by fi, f>, f3, respectively. Suppose that X is simulated via
the two-step procedure: First, draw Z from {1, 2, 3}, then draw X from f;. How likely is it
that the outcome x = 0.5 of X has come from the uniform pdf f,?

4. Simulate an iid training set of size 100 from the Gamma(2.3,0.5) distribution, and
implement the Fisher scoring method in Example 4.1 to find the maximum likelihood es-
timate. Plot the true and approximate pdfs.

5. Let 7 = {Xi,...,X,} be iid data from a pdf g(x|6) with Fisher matrix F(6). Explain
why, under the conditions where (4.7) holds,

1 n
Sr(0) =~ > S(X;10)
i=1

for large n has approximately a multivariate normal distribution with expectation vector 0
and covariance matrix F(0)/n.

6. Figure 4.15 shows a Gaussian KDE with bandwidth o = 0.2 on the points —0.5,0,
0.2,0.9, and 1.5. Reproduce the plot in Python. Using the same bandwidth, plot also the
KDE for the same data, but now with ¢(z) = 1/2,z € [-1,1].

0.8
0.6
0.4r

0.2

0

Figure 4.15: The Gaussian KDE (solid line) is the equally weighted mixture of normal pdfs
centered around the data and with standard deviation o = 0.2 (dashed).

7. For fixed x’, the Gaussian kernel function

1 @)
e 2 1

1
fxln = Ny

is the solution to Fourier’s heat equation

0 1 8
— 1) = ———
ol 10 = 252
with initial condition f(x|0) = é(x — x’) (the Dirac function at x"). Show this. As a con-
sequence, the Gaussian KDE is the solution to the same heat equation, but now with initial
condition f(x|0) = n~!' Y%, 6(x — x;). This was the motivation for the theta KDE [14],
which is a solution to the same heat equation but now on a bounded interval.

fx|t), xeR,t>0,



162 Exercises
8. Show that the Ward linkage given in (4.41) is equal to
1T =~ =
dwara( 7, = xXr—Xxq|°.
ward (L ) |f|+|j|” 7= Xgll
9. Carry out the agglomerative hierarchical clustering of Example 4.8 via the 1linkage
method from scipy.cluster.hierarchy. Show that the linkage matrices are the same.
Give a scatterplot of the data, color coded into K = 3 clusters.
10. Suppose that we have the data 7, = {x;,...,x,} in R and decide to train the two-
component Gaussian mixture model
1 —uy)? 1 —1)?
2(x18) = w, exp (—%) - w) exp (—%)
A /27r0'f 207 A /27r0’% 207
where the parameter vector 6 = [uy, u», 01, 0, wi, wy] T belongs to the set
O={0:w+w,=1,w; €[0,1],,; e R, 0, >0, Vi}.
Suppose that the training is via the maximum likelihood in (2.28). Show that
1 Z Ing(x;|6)
sup — ng(x;|0) = oo.
Oeg n<= 8
In other words, find a sequence of values for § € ® such that the likelihood grows without
bound. How can we restrict the set ® to ensure that the likelihood remains bounded?
11. A d-dimensional normal random vector X ~ N(u,X) can be defined via an affine
transformation, X = u + X'/2Z, of a standard normal random vector Z ~ N(0,1,), where
X!/2(x1/2)T = . In a similar way, we can define a d-dimensional Student random vector
X ~ t,(u, X) via a transformation
1
X=p+—=x'"?2, (4.46)
VS
where, Z ~ N(0,1,) and S ~ Gamma(%, %) are independent, @ > 0, and '/*(Z!/?)T = X,
Note that we obtain the multivariate normal distribution as a limiting case for @ — oo.
(a) Show that the density of the t,(0, I,) distribution is given by
a+d
I'l(a+d)/2) I
t(x) ;= ——— |1+ — )
(x) (7) P T(a)2) allxll
I 433 By the transformation rule (C.23), it follows that the density of X ~ t,(u, X) is given

by 7, x(x — ), where

t(t,)l(x) = t(t(z_l/zx)-

1
=7
[Hint: conditional on S = s, X has a N(0, I,;/s) distribution.]



Unsupervised Learning 163

(b) We wish to fit a t,(u, ) distribution to given data 7 = {xi, ..., x,} in RY via the EM
method. We use the representation (4.46) and augment the data with the vector S =
[S1,...,5,]" of hidden variables. Show that the complete-data likelihood is given by

(@/2)*25\ O exp(—SLa — LIZ2(x; — )P
grs10) =] | T .

C(a/2)2m)d2|x1/2] (4.47)

i

(c) Show that, as a consequence, conditional on the data T and parameter 6, the hidden
data are mutually independent, and

+d a+ |2V x - plP?
(S,~|r,6')~Gamma(a2 ,a I 2(x ”)”), i=1,...,n.

(d) At iteration ¢ of the EM algorithm, let g”(s) = g(s|7,0""") be the density of the
missing data, given the observed data t and the current parameter guess 8. Verify
that the expected complete-data log-likelihood is given by:

d
Eyo Ing(r,$16) = ?m% - %m(zn) —nlnl"(%) - gln x|

a+d-2 ¢ @+ IE72 0 = i
+ T ; Eg(r) lnS,- - ; 2 Eg(t)Si.

Show that

a(l—l) + d _. W(l‘—l)
oD+ D) R — gD

(1) d (1=1) d
EqoIn§; = ‘/’(%) _ ln(a . + ) +1In Wgt—l)’

Eg(t)S i =

where ¢ := (InT")’ is digamma function.

(e) Finally, show that in the M-step of the EM algorithm 6% is updated from """ as
follows:

n (t—1)
i1 WX

n (r-1)
=1 W

u® =

1O -
20 == 3w D - p) - 1),
n i=1

and a” is defined implicitly through the solution of the nonlinear equation:

‘ ’ n (_t—l) _ (f—l)
1n(9)—w(9)+¢(a()+d)—1n(“()2+d)+1+Z’zl(ln(w’ )~ v )=0.

2 2 2 n

12. A generalization of both the gamma and inverse-gamma distribution is the generalized

inverse-gamma distribution, which has density GENERALIZED
INVERSE-GAMMA
DISTRIBUTION

(a/b)"

1 -1
Sp 1e 2(aS+b/S)

f(s) =

=77 , a,b,s>0, peR, (4.48)
2K, (Vab)



164 Exercises

vopiriep BesseL.  where K, is the modified Bessel function of the second kind, which can be defined as the
ITUNCTION OF THE integral
SECOND KIND

K,(x) = f e " cosh(pr)dt, x>0, peR. (4.49)
0

We write S ~ GIG(a, b, p) to denote that S has a pdf of the form (4.48). The function K,
has many interesting properties. Special cases include

Ksp(x) = y[—- €™
More generally, K, satisfies the recursion
2p
K,i(x) =K, (x)+ TKp(x). (4.50)
(a) Using the change of variables e* = s Va/b, show that
f s"em2 @09 dg = 2K (Vab)(b/a)".
0

(b) LetS ~ GIG(a, b, p). Show that
\/_ +1(\/_)

4.51)
VaK,(Nab)
and
-1 \/_ +1(\/_) 2p
ES = - —. (4.52)
VbK,(Vab) b
SCALE-MIXTURE 13. In Exercise 11 we viewed the multivariate Student t, distribution as a scale-mixture

of the N(0,1,) distribution. In this exercise, we consider a similar transformation, but now
X!2Z ~ N(0,X) is not divided but is multiplied by VS, with S ~ Gamma(a/2, a/2):

X=p+Vsx'?z, (4.53)

where S and Z are independent and « > 0.

(a) Show, using Exercise 12, that for £!/2 = I, and u = 0, the random vector X has a

BESSEL d-dimensional Bessel distribution, with density:
DISTRIBUTION

21—(a+d)/20((t+d)/4 ”x”(a—d)/Z

72T (a/2)

Ko(X) 1=

K-y (el Va), xR,

where K, is the modified Bessel function of the second kind given in (4.49). We write
X ~ Bessel,(0,1,). A random vector X is said to have a Bessel,(u, X) distribution if



Unsupervised Learning

165

it can be written in the form (4.53). By the transformation rule (C.23), its density is
given by ﬁka():‘l/ 2(x — p)). Special instances of the Bessel pdf include:

o = ZPE V21D
’ V2
1+2
ki) = — M ep(=2 1)

1
K4(x1, X2, X3) = — exp (—2 N x%)
n

((d+1)/2)" \r
ki (¥) = o D &P (-Vd+1lxll), xeR

Note that k; is the (scaled) pdf of the double-exponential or Laplace distribution.

(b) Given the data 7 = {xi,...,x,} in R, we wish to fit a Bessel pdf to the data by
employing the EM algorithm, augmenting the data with the vector § = [Sy,...,S,]"
of missing data. We assume that « is known and @ > d. Show that conditional on
7 (and given ), the missing data vector S has independent components, with §; ~
GIG(a, b, (a — d)/2), with b; := ||IZ7V2(x; — )|, i=1,...,n.

(c) At iteration  of the EM algorithm, let g”(s) = g(s|7,6“V) be the density of the
missing data, given the observed data 7 and the current parameter guess 8. Show
that the expected complete-data log-likelihood is given by:

1 n
0"(6) := By Ing(r.516) = —3 > bi(@ w!™" + constant, (4.54)
i=1

where by(6) = [IZ7'*(x; — )|I* and

\/aK(a—d+2)/2(Va' bi(0"") ) a—-d

-1 ._ .

- - , 1=1,..
| ml{(md)/z(m ) bi(6"™V)

(d) From (4.54) derive the M-step of the EM algorithm. That is, show how 6% is updated
from 677V,

., .

14. Consider the ellipsoid E = {x € RY : xX~'x = 1} in (4.42). Let UD?’U" be an SVD of
Y. Show that the linear transformation x — UTD~'x maps the points on E onto the unit
sphere {z € R : ||z]| = 1}.

15. Figure 4.13 shows how the centered ‘“surfboard” data are projected onto the first
column of the principal component matrix U. Suppose we project the data instead onto
the plane spanned by the first fwo columns of U. What are a and b in the representation
ax, + bx, = x3 of this plane?

16. Figure 4.14 suggests that we can assign each feature vector x in the data set to
one of two clusters, based on the value of ux, where u, is the first principal component.
Plot the sepal lengths against petal lengths and color the points for which u[x < 1.5 differ-
ently to points for which u{ x > 1.5. To which species of iris do these clusters correspond?



166




CHAPTER 5

REGRESSION

Many supervised learning techniques can be gathered under the name “regression”.
The purpose of this chapter is to explain the mathematical ideas behind regression
models and their practical aspects. We analyze the fundamental linear model in detail,
and also discuss nonlinear and generalized linear models.

5.1 Introduction

Francis Galton observed in an article in 1889 that the heights of adult offspring are, on the
whole, more “average” than the heights of their parents. Galton interpreted this as a degen-
erative phenomenon, using the term “regression” to indicate this “return to mediocrity”.
Nowadays, regression refers to a broad class of supervised learning techniques where the
aim is to predict a quantitative response (output) variable y via a function g(x) of an ex-
planatory (input) vector x = [x;,...,x,]", consisting of p features, each of which can be
continuous or discrete. For instance, regression could be used to predict the birth weight of
a baby (the response variable) from the weight of the mother, her socio-economic status,
and her smoking habits (the explanatory variables).

Let us recapitulate the framework of supervised learning established in Chapter 2. The
aim is to find a prediction function g that best guesses' what the random output ¥ will be
for a random input vector X. The joint pdf f(x,y) of X and Y is unknown, but a training
set 7 = {(x1,y1),...,(x,,y,)} is available, which is thought of as the outcome of a random
training set 7 = {(X1, Y1), ..., (X, Y,)} of iid copies of (X, Y). Once we have selected a
loss function Loss(y,y), such as the squared-error loss

Loss(y,y) = (v = )7, (5.1)

then the “best” prediction function g is defined as the one that minimizes the risk £(g) =
E Loss(Y, g(X)). We saw in Section 2.2 that for the squared-error loss this optimal predic-
tion function is the conditional expectation

g'(x)=E[Y|X =x].

'Recall the mnemonic use of “g” for “guess”

167

REGRESSION

SQUARED-ERROR
LOSS

RISK



168

Introduction

LEARNER

= 2]

As the squared-error loss is the most widely-used loss function for regression, we will
adopt this loss function in most of this chapter.

The optimal prediction function g* has to be learned from the training set 7 by minim-
izing the training loss

1 n
£(9) =~ > 0= (e’ (5.2)
i=1

over a suitable class of functions G. Note that in the above definition, the training set 7 is
assumed to be fixed. For a random training set 7, we will write the training loss as {7(g).
The function g¢ that minimizes the training loss is the function we use for prediction —
the so-called learner. When the function class G is clear from the context, we drop the
superscript in the notation.

As we already saw in (2.2), conditional on X = x, the response Y can be written as

Y =g"(x) + &(x),

where E g(x) = 0. This motivates a standard modeling assumption in supervised learn-
ing, in which the responses Yi,...,Y,, conditional on the explanatory variables X; =
X1,..., X, = x,, are assumed to be of the form

Yi:g(xi)+8,~, i=1,...,n,

where the {g;} are independent with E&; = 0 and Varg; = o for some function g € G and
variance 0. The above model is usually further specified by assuming that g is completely
known up to an unknown parameter vector; that is,

Yi=gxi|B)+e, i=1,...,n (5.3)

While the model (5.3) is described conditional on the explanatory variables, it will be
convenient to make one further model simplification, and view (5.3) as if the {x;} were
fixed, while the {Y;} are random.

fixed and only the responses are random; that is, 7 = {(x, Y1), ..., (x,, Y)}.

2 ( For the remainder of this chapter, we assume that the training feature vectors {x;} are

The advantage of the model (5.3) is that the problem of estimating the function g from
the training data is reduced to the (much simpler) problem of estimating the parameter
vector . An obvious disadvantage is that functions of the form g(- | 8) may not accurately
approximate the true unknown g*. The remainder of this chapter deals with the analysis
of models of the form (5.3). In the important case where the function g(- | 8) is linear, the
analysis proceeds through the class of linear models. If, in addition, the error terms {&;} are
assumed to be Gaussian, this analysis can be carried out using the rich theory of normal
linear models.



Regression

169

5.2 Linear Regression

The most basic regression model involves a linear relationship between the response and a
single explanatory variable. In particular, we have measurements (xy,yy),. .., (X,,y,) that
lie approximately on a straight line, as in Figure 5.1.

1571

10+

Figure 5.1: Data from a simple linear regression model.

Following the general scheme captured in (5.3), a simple model for these data is that
the {x;} are fixed and variables {Y;} are random such that

Yi=Bo+pixite, i=1,....n, 5.4)

for certain unknown parameters S, and ;. The {g;} are assumed to be independent with
expectation 0 and unknown variance o-. The unknown line

y=PBo+p1x (5.5)
————
gx1B)

is called the regression line. Thus, we view the responses as random variables that would
lie exactly on the regression line, were it not for some “disturbance” or “error” term repres-
ented by the {g;}. The extent of the disturbance is modeled by the parameter o->. The model
in (5.4) is called simple linear regression. This model can easily be extended to incorporate
more than one explanatory variable, as follows.

Definition 5.1: Multiple Linear Regression Model

In a multiple linear regression model the response Y depends on a d-dimensional
explanatory vector x = [x,...,x;]", via the linear relationship

Y=Bo+Bixi+ - +Baxs+&, (5.6)

where E¢ = 0 and Vare = o2.

REGRESSION LINE

SIMPLE LINEAR
REGRESSION
MODEL

MULTIPLE LINEAR
REGRESSION
MODEL



170

Linear Regression

= 44

MODEL MATRIX

Thus, the data lie approximately on a d-dimensional affine hyperplane

y=po+pix1 + -+ Baxa,
gx|p)

where we define 8 = [By,1,...,B4]". The function g(x |B) is linear in B, but not linear in
the feature vector x, due to the constant 8,. However, augmenting the feature space with
the constant 1, the mapping [1,x7]" — g(x|B) := [1,x7] B becomes linear in the feature
space and so (5.6) becomes a linear model (see Section 2.1). Most software packages for
regression include 1 as a feature by default.

Note that in (5.6) we only specified the model for a single pair (x, Y). The model for the
training set 7 = {(xy, Y1),...,(x,, Y,,)} is simply that each Y; satisfies (5.6) (with x = x;)
and that the {Y;} are independent. Setting Y = [Yy,...,Y,]", we can write the multiple
linear regression model for the training data compactly as

Y=XB+e, (5.7)

where € = [g1,...,&,]" is a vector of iid copies of & and X is the model matrix given by

1 X11 X12 o Xid 1 x]—

T

I xp1 X2 -+ X 1 X,
X={. . . . .|=

T

1 Xnl Xn2  Xpd 1 X,

B Example 5.1 (Multiple Linear Regression Model) Figure 5.2 depicts a realization of
the multiple linear regression model

Yi=xqg+xp+sg, i=1,...,100,

where &1, ..., €100 ~iiga N(0, 1/16). The fixed feature vectors (vectors of explanatory vari-
ables) x; = [x;1, x2]", i = 1,..., 100 lie in the unit square.

> 1

Figure 5.2: Data from a multiple linear regression model.



Regression

171

5.3 Analysis via Linear Models

Analysis of data from a linear regression model is greatly simplified through the linear
model representation (5.7). In this section we present the main ideas for parameter estima-
tion and model selection for a general linear model of the form

Y=XB+e, (5.8)

where X is an nX p matrix, 8 = [B;,...,8,]" a vector of p parameters, and & = [&],...,&,]"

an n-dimensional vector of independent error terms, with E¢; = 0 and Varg; = o0 =
1,...,n. Note that the model matrix X is assumed to be fixed, and Y and & are random. A
specific outcome of Y is denoted by y (in accordance with the notation in Section 2.8).

Note that the multiple linear regression model in (5.7) was defined using a different
parameterization; in particular, there we used 8 = [Bo, 1, - -.,B4]". So, when apply-
ing the results in the present section to such models, be aware that p = d + 1. Also,
in this section a feature vector x includes the constant 1, so that X" = [x,..., x,].

5.3.1 Parameter Estimation

The linear model Y = XB + & contains two unknown parameters, 8 and o2, which have
to be estimated from the training data 7. To estimate 8, we can repeat exactly the same
reasoning used in our recurring polynomial regression Example 2.1 as follows. For a linear
prediction function g(x) = x' B, the (squared-error) training loss can be written as

1
t(g) =~ lly - XBIP,

and the optimal learner g, minimizes this quantity, leading to the least-squares estimate E
which satisfies the normal equations

XTXB=XTy. (5.9

The corresponding training loss can be taken as an estimate of o2; that is,
p BIP?
o :;Ily—X,B’II : (5.10)

To justify the latter, note that o is the second moment of the model errors &;,i = 1,...,n,
in (5.8) and could be estimated via the method of moments (see Section C.12.1) using the
sample average n™' Y, &7 = |lg||*/n = ||Y — XBI|*/n, if B were known. By replacing B with
its estimator, we arrive at (5.10). Note that no distributional properties of the {&;} were used
other than Eg; = 0 and Vare; = 02,i = 1,...,n. The vector e := y — X is called the
vector of residuals and approximates the (unknown) vector of model errors &. The quantity
llell* = X%, e is called the residual sum of squares (RSS). Dividing the RSS by n— p gives
an unbiased estimate of o2, which we call the estimated residual squared error (RSE); see
Exercise 12.

= 26

I5 455

RESIDUALS

RESIDUAL SUM OF
SQUARES

RESIDUAL
SQUARED ERROR



172

Analysis via Linear Models

= 25

= 3]

= 24

I 38

= 216

= 35

In terms of the notation given in the summary Table 2.1 for supervised learning, we
thus have:

1.

2.

The (observed) training data is 7 = {X, y}.

The function class G is the class of linear functions of x; thatis G = {g(:|B) : x —

x7B, B € RP}.

. The (squared-error) training loss is £,(g(- | B)) = |ly — XBI[*/n.

. The learner g, is given by g.(x) = xT,E, whereﬁ = argming, [ly — XBI°.

. The minimal training loss is £;(g.) = |y — Xﬁllz/n = o2,

5.3.2 Model Selection and Prediction

Even if we restrict the learner to be a linear function, there is still the issue of which explan-
atory variables (features) to include. While including too few features may result in large
approximation error (underfitting), including too many may result in large statistical error
(overfitting). As discussed in Section 2.4, we need to select the features which provide the
best tradeoff between the approximation and statistical errors, so that the (expected) gener-
alization risk of the learner is minimized. Depending on how the (expected) generalization
risk is estimated, there are a number of strategies for feature selection:

1.

Use test data v/ = (X', y’) that are obtained independently from the training data 7,
to estimate the generalization risk E ||Y — g.(X)||* via the test loss (2.7). Then choose
the collection of features that minimizes the test loss. When there is an abundance of
data, part of the data can be reserved as test data, while the remaining data is used as
training data.

When there is a limited amount of data, we can use cross-validation to estimate the
expected generalization risk E||Y — g7(X)|*> (where 7 is a random training set), as
explained in Section 2.5.2. This is then minimized over the set of possible choices
for the explanatory variables.

. When one has to choose between many potential explanatory variables, techniques

such as regularized least-squares and lasso regression become important. Such
methods offer another approach to model selection, via the regularization (or ho-
motopy) paths. This will be the topic of Section 6.2 in the next chapter.

Rather than using computer-intensive techniques, such as the ones above, one can
use theoretical estimates of the expected generalization risk, such as the in-sample
risk, AIC, and BIC, as in Section 2.5, and minimize this to determine a good set of
explanatory variables.

. All of the above approaches do not assume any distributional properties of the error

terms {g;} in the linear model, other than that they are independent with expectation
0 and variance o2. If, however, they are assumed to have a normal (Gaussian) distri-
bution, (that is, {&;} ~iia N(0, 02)), then the inclusion and exclusion of variables can



Regression

173

be decided by means of hypotheses tests. This is the classical approach to model
selection, and will be discussed in Section 5.4. As a consequence of the central limit
theorem, one can use the same approach when the error terms are not necessarily
normal, provided their variance is finite and the sample size n is large.

6. Finally, when using a Bayesian approach, comparison of two models can be achieved
by computing their so-called Bayes factor (see Section 2.9).

All of the above strategies can be thought of as specifications of a simple rule formu-
lated by William of Occam, which can be interpreted as:

When presented with competing models, choose the simplest one that explains
the data.

This age-old principle, known as Occam’s razor, is mirrored in a famous quote of Einstein:
Everything should be made as simple as possible, but not simpler.

In linear regression, the number of parameters or predictors is usually a reasonable measure
of the simplicity of the model.

5.3.3 Cross-Validation and Predictive Residual Sum of Squares

We start by considering the n-fold cross-validation, also called leave-one-out cross-
validation, for the linear model (5.8). We partition the data into n data sets, leaving out
precisely one observation per data set, which we then predict based on the n — 1 remaining
observations; see Section 2.5.2 for the general case. Lety_; denote the prediction for the
i-th observation using all the data except y;. The error in the prediction, y; —y_;, is called a
predicted residual — in contrast to an ordinary residual, ¢; = y; —y;, which is the difference
between an observation and its fitted value y; = g.(x;) obtained using the whole sample. In
this way, we obtain the collection of predicted residuals {y; —’yi,-}?zl and summarize them
through the predicted residual sum of squares (PRESS):

PRESS = » (i ..

i=1

Dividing the PRESS by n gives an estimate of the expected generalization risk.

In general, computing the PRESS is computationally intensive as it involves training
and predicting n separate times. For linear models, however, the predicted residuals can be
calculated quickly using only the ordinary residuals and the projection matrix P = XX*
onto the linear space spanned by the columns of the model matrix X (see (2.13)). The i-th
diagonal element P;; of the projection matrix is called the i-th leverage, and it can be shown
that 0 < P; < 1 (see Exercise 10).

OccAM’S RAZOR

LEAVE-ONE-OUT
CROSS-VALIDATION

= 38

PREDICTED
RESIDUAL

PRESS

= 171

= 28

LEVERAGE



174

Analysis via Linear Models

5 371

= 26

1= 174

Theorem 5.1: PRESS for Linear Models

Consider the linear model (5.8), where the nX p model matrix X is of full rank. Given

an outcome y = [yy,...,y,]" of Y, the fitted values can be obtained as’y = Py, where
P = XX* = X(X"X)"'XT is the projection matrix. If the leverage value p; := P; # 1
foralli =1,...,n, then the predicted residual sum of squares can be written as

n 2
e.
PRESS = ( : ) ,

wheree; =y, =y, = yi — (Xﬁ)i is the i-th residual.

Proof: Tt suffices to show that the i-th predicted residual can be written as y; — y_; =
e;/(1 — p;). Let X_; denote the model matrix X with the i-th row, x, removed, and define
y_; similarly. Then, the least-squares estimate for £ using all but the i-th observation is
E_i = (XTX_)"'XTy_,. Writing X"X = XT.X_; + x;x], we have by the Sherman—Morrison
formula

XTX)ex [ (XTX) ™!

I—xT(XTX)x;

XX ) =X+

where x] (XTX) 'x; = p; < 1. Also, X"y_; = X"y — x;y;. Combining all these identities,
we have

E—i = (XIiX—i)_IXL'.Y—i
(XTX) T (XTX)!
1 -p;
B+ XTX) M wx/ B L XXy, — XTX)xipiyi
1 - p; 1 - p;
i XXkl (XTX)
1 -p;i 1 -pi
5. X0 0~ B~ (XX 'xe

1 =p;i p 1 -pi

= (XX + X7y —x;y)

It follows that the predicted value for the i-th observation is given by

y—iniTﬁ—i:xiTﬁ—¥:%— e .
I —p; I-pi
Hence, y; —=y_; = e; + pie;/(1 — p;) = e;/(1 — p)). o

B Example 5.2 (Polynomial Regression (cont.)) We return to Example 2.1, where we
estimated the generalization risk for various polynomial prediction functions using inde-
pendent validation data. Instead, let us estimate the expected generalization risk via cross-
validation (thus using only the training set) and apply Theorem 5.1 to compute the PRESS.



Regression 175
polyregpress.py
import numpy as np
import matplotlib.pyplot as plt
def generate_data(beta , sig, n):
u = np.random.rand(n, 1)
y = u ** np.arange(0®, 4) @ beta.reshape(4,1) + (
sig * np.random.randn(n, 1))
return u, y
np.random.seed (12)
beta = np.array([[10.0, -140, 400, -250]]1).T;
sig=5; n = 10%*2;
u,y = generate_data(beta,sig,n)
X = np.ones((n, 1))
K = 12 #maximum number of parameters
press = np.zeros(K+1)
for k in range(1,K):
if k > 1:
X = np.hstack((X, u**(k-1))) # add column to matrix
P = X @ np.linalg.pinv(X) # projection matrix
e=y -Pa@y
press[k] = np.sum((e/(l-np.diag(P).reshape(n,1)))**2)
plt.plot(press[1:K]/n)

The PRESS values divided by n = 100 for the constant, linear, quadratic, cubic, and
quartic order polynomial regression models are, respectively, 152.487,56.249,51.606,
30.999, and 31.634. Hence, the cubic polynomial regression model has the lowest PRESS,
indicating that it has the best predictive performance. [ ]
5.3.4 In-Sample Risk and Akaike Information Criterion
In Section 2.5.1 we introduced the in-sample risk as a measure for the accuracy of the = 35
prediction function. To recapitulate, given a fixed data set T with associated response vector
y and n X p matrix of explanatory variables X, the in-sample risk of a prediction function
g is defined as

€in(g) = Ex Loss(¥, g(X)), (5.11)
where Eyx signifies that the expectation is taken under a different probability model, in
which X takes the values x,...,x, with equal probability, and given X = x; the random
variable Y is drawn from the conditional pdf f(y|x;). The difference between the in-sample
risk and the training loss is called the optimism. For the squared-error loss, Theorem 2.2 ex- = 36

presses the expected optimism of a learner g7 as two times the average covariance between
the predicted values and the responses.

If the conditional variance of the error ¥ — g*(X) given X = x does not depend on x,
then the expected in-sample risk of a learner g., averaged over all training sets, has a simple
expression:


https://github.com/DSML-book/Programs/blob/master/Chapter5/polyregpress.py

176

Analysis via Linear Models

= 122

Theorem 5.2: Expected In-Sample Risk for Linear Models

Let X be the model matrix for a linear model, of dimension n X p. If Var[Y —
g"(X)| X = x] =: v* does not depend on x, then the expected in-sample risk (with
respect to the squared-error loss) for a random learner g4 is given by

26*
Ex €in(gr) = Bx br(gr) + n” : (5.12)

where ¢* is the irreducible risk.

Proof: The expected optimism is, by definition, Ex[{i,(g7) — {+(g7)] which, for the
squared-error loss, is equal to 2£* p/n, using exactly the same reasoning as in Example 2.3.
Note that here £* = V2. O

Equation (5.12) is the basis of the following model comparison heuristic: Estimate the

irreducible risk ¢* = v via v2, using a model with relatively high complexity. Then choose
the linear model with the lowest value of

Iy = XBI +22p. (5.13)

We can also use the Akaike information criterion (AIC) as a heuristic for model com-
parison. We discussed the AIC in the unsupervised learning setting in Section 4.2, but the
arguments used there can also be applied to the supervised case, under the in-sample model
for the data. In particular, let Z = (X, Y). We wish to predict the joint density

1 n
@)= @) = = 3 Ly SO %0,
i=1

using a prediction function g(z | @) from a family G := {g(z|0), @ € R?}, where
1 n
8(z|0) =g(x,y|0) = - Z Lix=xy &i(¥16).
i

Note that ¢ is the number of parameters (typically larger than p for a linear model with a
n X p design matrix).
Following Section 4.2, the in-sample cross-entropy risk in this case is

r(0) := —ExIng(Z0),
and to approximate the optimal parameter §° we minimize the corresponding training loss
C) 1 Zn: Ing(z;|0)
r. (0) = —— 1 0).
n n j:1 g Z]
The optimal parameter 6, for the training loss is thus found by minimizing

_%Z(—lnn+ lngj(yj|9))-

=



Regression 177

That 1s, it is the maximum likelihood estimate of 6:

—_

0, = argmax Ing;(y;10).
en Z 8i(y

i=1

Under the assumption that f = g(-|8") for some parameter €, we have from Theorem 4.1
that the estimated in-sample generalization risk can be approximated as = 125

— — q 1 & — q
Ex r(6,) ~ 0)+-=1 ——El (vi16,) + =.
x 1(6,) ~ rr,(0,) n nn " ng;(y;l6,) "

J=1

This leads to the heuristic of selecting the learner g(- |§n) with the smallest value of the

AIC: "
=23 Ingi(v:6,) +2q. (5.14)
i=1
B Example 5.3 (Normal Linear Model) For the normal linear model ¥ ~ N(x'S,0?)
(see (2.34)), with a p-dimensional vector B, we have = 47
1(y; — x;B)*
gi(yil ﬁ’o-z): R exp(———2 > =1,...,n,
S—— 71-0-2 2 g
=0
so that the AIC is _
— - XBII?
nIn@r) + ning® + 2P o) (5.15)

where (ﬁ, 0%) is the maximum likelihood estimate and g = p+1 is the number of parameters
(including o). For model comparison we may remove the n In(27) term if all the models
are normal linear models. u

Q Certain software packages report the AIC without the nlno? term in (5.15). This
may lead to sub-optimal model selection if normal models are compared with non-
normal ones.

5.3.5 Categorical Features

Suppose that, as described in Chapter 1, the data is given in the form of a spreadsheet or
data frame with n rows and p + 1 columns, where the first element of row i is the response
variable y;, and the remaining p elements form the vector of explanatory variables x; .
When all the explanatory variables (features, predictors) are quantitative, then the model
matrix X can be directly read off from the data frame as the n X p matrix with rows x,i =
1,...,n.

However, when some explanatory variables are qualitative (categorical), such a one-to-
one correspondence between data frame and model matrix no longer holds. The solution is
to include indicator or dummy variables.

Linear models with continuous responses and categorical explanatory variables often
arise in factorial experiments. These are controlled statistical experiments in which the

FACTORIAL
EXPERIMENTS



178

Analysis via Linear Models

FACTORS
LEVELS

INDICATOR
FEATURE

aim is to assess how a response variable is affected by one or more factors tested at several
levels. A typical example is an agricultural experiment where one wishes to investigate
how the yield of a food crop depends on factors such as location, pesticide, and fertilizer.

B Example 5.4 (Crop Yield) The data in Table 5.1 lists the yield of a food crop for four
different crop treatments (e.g., strengths of fertilizer) on four different blocks (plots).

Table 5.1: Crop yield for different treatments and blocks.

Treatment
Block 1 2 3 4
1 0.2988 9.4978 9.7604 10.1025
2 8.2111 8.3387 8.5018 8.1942
3 9.0688 9.1284 9.3484 9.5086
4 8.2552 7.8999 8.4859 8.9485

The corresponding data frame, given in Table 5.2, has 16 rows and 3 columns: one
column for the crop yield (the response variable), one column for the Treatment, with
levels 1, 2, 3, 4, and one column for the Block, also with levels 1, 2, 3, 4. The values 1,
2, 3, and 4 have no quantitative meaning (it does not make sense to take their average, for
example) — they merely identify the category of the treatment or block.

Table 5.2: Crop yield data organized as a data frame in standard format.
Yield Treatment Block

9.2988 1 1

8.2111 1 2

9.0688 1 3

8.2552 1 4

9.4978 2 1

8.3387 2 2

9.5086 4 3

8.9485 4

|
In general, suppose there are r factor (categorical) variables uy, ..., u,, where the j-
th factor has p; mutually exclusive levels, denoted by 1, ..., p;. In order to include these

categorical variables in a linear model, a common approach is to introduce an indicator
feature xj = 1{u; = k} for each factor j at level k. Thus, xj = 1 if the value of factor j
is k and O otherwise. Since ), 1{u; = k} = 1, it suffices to consider only p; — 1 of these
indicator features for each factor j (this prevents the model matrix from being rank defi-
cient). For a single response Y, the feature vector x " is thus a row vector of binary variables



Regression

179

that indicates which levels were observed for each factor. The model assumption is that Y
depends in a linear way on the indicator features, apart from an error term. That is,

Y= ﬁwi]Zﬁ,k =k} +e,

1 k=2
Jj= X/k

where we have omitted one indicator feature (corresponding to level 1) for each factor

Jj. For independent responses Yi,...,Y,, where each Y; corresponds to the factor values
Ui, ..., Uy, let x;3 = 1{u;; = k}. Then, the linear model for the data becomes
r Pj
Y; :ﬁ0+zz,8jkxijk+5i’ (5.16)
j=1 k=2

where the {&;} are independent with expectation 0 and some variance o>. By gathering the
Bo and {8} into a vector B, and the {x;;} into a matrix X, we have again a linear model of
the form (5.8). The model matrix X has n rows and 1 + 3_;(p,; — 1) columns. Using the
above convention that the 5;, parameters are subsumed in the parameter 5, (correspond-
ing to the “constant” feature), we can interpret 5, as a baseline response when using the
explanatory vector x™ for which x;; = 1 for all factors j = 1,...,r. The other parameters
{Bx} can be viewed as incremental effects relative to this baseline effect. For example, S,
describes by how much the response is expected to change if level 2 is used instead of level
1 for factor 1.

B Example 5.5 (Crop Yield (cont.)) In Example 5.4, the linear model (5.16) has eight
parameters: By, B12, 513, P14, P22, 523, P4, and 02. The model matrix X depends on how
the crop yields are organized in a vector y and on the ordering of the factors. Let
us order y column-wise from Table 5.1, as in y = [9.2988,8.2111,9.0688, 8.2552,
9.4978, ...,8.9485]"7, and let Treatment be Factor 1 and Block be Factor 2. Then we can
write (5.16) as

B ]
Bz
B3
Bis| +& where C =
B
Ba3
N

——
B

—
SO =D
S =D
A
aaaan
o O = O
o = O O
- o O O

>

and with 1 = [1,1,1,1]" and 0 = [0,0,0,0]". Estimation of 8 and o%, model selection,
and prediction can now be carried out in the usual manner for linear models. [ ]

In the context of factorial experiments, the model matrix is often called the design
matrix, as it specifies the design of the experiment; e.g., how many replications are taken
for each combination of factor levels. The model (5.16) can be extended by adding products
of indicator variables as new features. Such features are called interaction terms.

INCREMENTAL
EFFECTS

DESIGN MATRIX

INTERACTION



180

Analysis via Linear Models

NESTED MODELS

5.3.6 Nested Models

Let X be a n X p model matrix of the form X = [X;, X;], where X; and X, are model
matrices of dimension n X k and n X (p — k), respectively. The linear models Y = X8, + €
and Y = X,,8, + & are said to be nested within the linear model ¥ = X8 + &. This simply
means that certain features in X are ignored in each of the first two models. Note that 8, 5,
and B, are parameter vectors of dimension p, k, and p — k, respectively. In what follows,
we assume that n > p and that all model matrices are full-rank.

Suppose we wish to assess whether to use the full model matrix X or the reduced model
matrix X;. Let ﬂ be the estimate of 8 under the full model (that is, obtained via (5.9)), and
let ﬂl denote the estimate of B, for the reduced model. Let Y@ = Xﬂ be the projection of Y
onto the space Span(X) spanned by the columns of X; and let Y = 1/3 | be the projection
of Y onto the space Span(X,) spanned by the columns of X only; see Figure 5.3. In order
to decide whether the features in X, are needed, we may compare the estimated error terms
of the two models, as calculated by (5.10); that is, by the residual sum of squares divided
by the number of observations n. If the outcome of this comparison is that there is little
difference between the model error for the full and reduced model, then it is appropriate to
adopt the reduced model, as it has fewer parameters than the full model, while explaining
the data just as well. The comparison is thus between the squared norms ||Y — Y?|? and
IY — YV|2. Because of the nested nature of the linear models, Span(X) is a subspace of
Span(X) and, consequently, the orthogonal projection of ¥ onto Span(X,) is the same
as the orthogonal projection of ¥ onto Span(X,); that is, Y. By Pythagoras’ theorem, we
thus have the decomposition ||[Y® =Y V|2 +(|Y = Y@|? = ||Y = YV||2. This is also illustrated
in Figure 5.3.

Y
-7 _y®
-7 y-yw r-=r
o)) AN

———————— Y®

Y@ _ y®
(1)
Span(X) 4
Span(X;)

Figure 5.3: The residual sum of squares for the full model corresponds to ||¥Y — Y®|? and for
the reduced model it is ||Y — Y'V||. By Pythagoras’s theorem, the difference is |[Y® — YV|2.

The above decomposition can be generalized to more than two model matrices. Sup-
pose that the model matrix can be decomposed into d submatrices: X = [X, X5, ..., X,],
where the matrix X; has p; columns and n rows, i = 1, ..., d. Thus, the number of columns?

2 As always, we assume the columns are linearly independent.



Regression

181

in the full model matrix is p = p; +- - -+ p,. This creates an increasing sequence of “nested”
model matrices: Xy, [X;, X5],...,[X}, X,, ..., X,], from (say) the baseline normal model
matrix X; = 1 to the full model matrix X. Think of each model matrix corresponding to
specific variables in the model.

We follow a similar projection procedure as in Figure 5.3: First project ¥ onto Span(X)
to yield the vector Y@, then project Y onto Span([X, ..., X, 1]) to obtain Y“ D and so
on, until Y® is projected onto Span(X,) to yield Y = Y1 (in the case that X; = 1).

By applying Pythagoras’ theorem, the total sum of squares can be decomposed as

[Y YOI = ||y = YO+ YD - YD 4 )Y - YO (5.17)
——
df=n—p; df=n-p df=p, df=p,

Software packages typically report the sums of squares as well as the corresponding de-
grees of freedom (df): n — p, py, ..., p2.

5.3.7 Coefficient of Determination

To assess how a linear model Y = X8 + & compares to the default model Y = SBy1 + &, we
can compare the variance of the original data, estlmated via Y, (Y; - Y )2 /n =Y = Y1|?/n,
with the variance of the fitted data; estimated via Y, ;- Y)*/n = ||[Y - Y1|?/n, where
Y = X,B The sum ) (Y, - Y )2 /n = ||Y = Y1|7 is sometimes called the foral sum of squares
(TSS), and the quantity
e [P -T1P
1Y - Y12
is called the coefficient of determination of the linear model. In the notation of Figure 5.3,
Y =Y?and Y1 = Y, so that

(5.18)

R = ”Y(Z) _ Y(1)||2 ~ Y — Y(l)”2 —||Y - Y(2)||2 ~ TSS = RSS
Iy -y Y -y TSS

Note that R? lies between 0 and 1. An R? value close to 1 indicates that a large propor-
tion of the variance in the data has been explained by the model.

Many software packages also give the adjusted coefficient of determination, or simply
the adjusted R?, defined by

-1
n-p

RZ

adjusted —

—1-(1-R)"

The regular R? is always non-decreasing in the number of parameters (see Exercise 15),
but this may not indicate better predictive power. The adjusted R?> compensates for this
increase by decreasing the regular R? as the number of variables increases. This heuristic
adjustment can make it easier to compare the quality of two competing models.

DEGREES OF
FREEDOM

TOTAL SUM OF
SQUARES

COEFFICIENT OF
DETERMINATION

ADJUSTED
COEFFICIENT OF
DETERMINATION



182

Inference for Normal Linear Models

= 47

= 360

1= 435

I 438

1= 458

5.4 Inference for Normal Linear Models

So far we have not assumed any distribution for the random vector of errors € =
[e1,...,&,]" in a linear model Y = XB + &. When the error terms {g;} are assumed to be
normally distributed (that is, {&;} ~jia N(0, o%)), whole new avenues open up for inference
on linear models. In Section 2.8 we already saw that for such normal linear models, estim-
ation of B and o? can be carried out via maximum likelihood methods, yielding the same
estimators from (5.9) and (5.10).

The following theorem lists the properties of these estimators. In particular, it shows
thatﬁ and o2n/(n — p) are independent and unbiased estimators of 8 and o, respectively.

Theorem 5.3: Properties of the Estimators for a Normal Linear Model

Consider the linear model Y = X8 + &, with & ~ N(0,0%1,), where B is a p-
dimensional vector of parameters and o a dispersion parameter. The following res-
ults hold.

1. The maximum likelihood estimators E and o2 are independent.
2. B~ N(B, c2(XTX)").

3. no2jo? ~ Xn_,» Where p = rank(X).

Proof: Using the pseudo-inverse (Definition A.2), we can write the random vector ,E as
X*Y, which is a linear transformation of a normal random vector. Consequently, 8 has a
multivariate normal distribution; see Theorem C.6. The mean vector and covariance matrix
follow from the same theorem:

EB=X'EY =X'X8=2

and
Cov(B) = X*0I,(X")T = o> (X X)*.

To show that E and o2 are independent, define Y® = XE Note that Y /o has a N(u, I,,)
distribution, with expectation vector g = Xf/co. A direct application of Theorem C.10
now shows that (Y — Y?)/o is 1ndependent of Y?/o. Since B = X*Xﬂ X+Y? and

ol = = |lY = Y?||*/n, it follows that o2 is 1ndependent of ﬁ Finally, by the same theorem,
the random variable ||Y — Y?|?/o2 has a )(n_ » distribution, as Y® has the same expectation
vector as Y. O

As a corollary, we see that each estimatorﬁ, of B; has a normal distribution with expect-
ation B; and variance ou] X*(X*)"u; = o?|lu] X*||*, where u; = [0,...,0,1,0,...,0]7 is
the i-th unit vector; in other words, the variance is o> [(X" X)*];:.

It is of interest to test whether certain regression parameters (3; are 0 or not, since if
Bi; = 0, the i-th explanatory variable has no direct effect on the expected response and so
could be removed from the model. A standard procedure is to conduct a hypothesis test
(see Section C.14 for a review of hypothesis testing) to test the null hypothesis Hy : 8; = 0



Regression

183

against the alternative H, : 8; # 0, using the test statistic

Bl X
VRSE

where RSE is the residual squared error; that is RSE = RSS/(n — p). This test statistic has
at,_, distribution under Hy. To see this, write T = Z/4/V/(n — p), with

T (5.19)

__ B

= and V = n}\Q o’
olu XH]] f

Then, by Theorem 5.3, Z ~ N(0, 1) under Hy, V ~ X%_p, and Z and V are independent. The
result now follows directly from Corollary C.1.

5.4.1 Comparing Two Normal Linear Models

Suppose we have the following normal linear model for data Y = [Yy,...,Y,]":

Y = X\B8, + Xof, +&, &~ N(0,0°1,), (5.20)
B
X

where B, and B, are unknown vectors of dimension k and p — k, respectively; and X,
and X, are full-rank model matrices of dimensions n X k and n X (p — k), respectively.
Above we implicitly defined X = [X;, X,] and 87 = [B], 8, ]. Suppose we wish to test the
hypothesis Hy : B, = 0 against H; : B8, # 0. Following Section 5.3.6, the idea is to compare
the residual sum of squares for both models, expressed as ||Y — Y?|? and ||Y - Y2 Using
Pythagoras’ theorem we saw that ||Y — Y@|? — |[Y = YV|? = |[Y® — YD), and so it makes
sense to base the decision whether to retain or reject Hy on the basis of the quotient of
1Y® — YW|12 and ||Y — Y@||2. This leads to the following test statistics.

Theorem 5.4: Test Statistic for Comparing Two Normal Linear Models

For the model (5.20), let Y*® and Y" be the projections of ¥ onto the space spanned
by the p columns of X and the k columns of X, respectively. Then under Hy : 5, = 0

the test statistic
P -YOIR/(p - k)

1Y = Y®|2/(n - p)
has an F(p — k, n — p) distribution.

(5.21)

Proof: Define X := Y /o with expectation y := XB/o, and X; := Y /o with expectation
H;, j =k, p. Note that p, = p and, under Hy, p;, = p,,. We can directly apply Theorem C.10
to find that |[Y — Y®|*/o? = ||X — X,|* ~ x2_, and, under H,, [[Y® - YV|?/o? = |IX,, -
X ~ )(f)_k. Moreover, these random variables are independent of each other. The proof
is completed by applying Theorem C.11. O

b 439

15 438



184

Inference for Normal Linear Models

= 183

ANALYSIS OF
VARIANCE

Note that H) is rejected for large values of 7. The testing procedure thus proceeds as
follows:

1. Compute the outcome, ¢ say, of the test statistic 7 in (5.21).
2. Evaluate the P-value P(T > 1), with T ~ F(p — k,n — p).
3. Reject H, if this P-value is too small, say less than 0.05.

For nested models [ X, X, ..., X;],i=1,2,...,d,asin Section 5.3.6, the F test statistic
in Theorem 5.4 can now be used to test whether certain X; are needed or not. In particular,
software packages will report the outcomes of

YO YR
Y = YOI2/(n - p)’

; (5.22)
in the order i = 2,3, ...,d. Under the null hypothesis that Y®? and Y%V have the same ex-
pectation (that is, adding X; to X,_; has no additional effect on reducing the approximation
error), the test statistic F; has an F(p;, n — p) distribution, and the corresponding P-values
quantify the strength of the decision to include an additional variable in the model or not.
This procedure is called analysis of variance (ANOVA).

are considered.

c ( Note that the output of an ANOVA table depends on the order in which the VariablesJ

B Example 5.6 (Crop Yield (cont.)) We continue Examples 5.4 and 5.5. Decompose the
linear model as

1 000 C
1 1 0 o7 c| |°%
Y=1 fL+010L13+ C L”“"
i A oo 1| |c] 22
\/_/ ‘/—/ﬂz \/—/l%

X; X, X3

Is the crop yield dependent on treatment levels as well as blocks? We first test whether we
can remove Block as a factor in the model against it playing a significant role in explain-
ing the crop yields. Specifically, we test B; = 0 versus B; # 0 using Theorem 5.4. Now
the vector Y is the projection of Y onto the (p = 7)-dimensional space spanned by the
columns of X = [X;, X,, X;]; and YV is the projection of Y onto the (k = 4)-dimensional
space spanned by the columns of X, := [X, X;]. The test statistic, T, say, under H, has
an F(3,9) distribution.

The Python code below calculates the outcome of the test statistic 7', and the corres-
ponding P-value. We find 7, = 34.9998, which gives a P-value 2.73 x 107, This shows
that the block effects are extremely important for explaining the data.

Using the extended model (including the block effects), we can test whether 8, = 0 or
not; that is, whether the treatments have a significant effect on the crop yield in the presence
of the Block factor. This is done in the last six lines of the code below. The outcome of



Regression 185

the test statistic is 4.4878, with a P-value of 0.0346. By including the block effects, we
effectively reduce the uncertainty in the model and are able to more accurately assess the
effects of the treatments, to conclude that the treatment seems to have an effect on the crop
yield. A closer look at the data shows that within each block (row) the crop yield roughly
increases with the treatment level.

import numpy as np
from scipy.stats import f
from numpy.linalg import 1lstsq, norm

yy = np.array([9.2988, 9.4978, 9.7604, 10.1025,
8.2111, 8.3387, 8.5018, 8.1942,
9.0688, 9.1284, 9.3484, 9.5086,
8.2552, 7.8999, 8.4859, 8.9485]) .reshape(4,4).T

nrow, ncol = yy.shape[0], yy.shape[1l]
n = nrow * ncol
yy.reshape (16,)

y:
X_1 = np.ones((n,1))

KM = np.kron(np.eye(ncol),np.ones((nrow,1)))
KM[:,0]

X_2 = KM[:,1:ncol]

IM = np.eye(nrow)

C = IM[:,1l:nrow]

X_3 = np.vstack((C, ©))
= np.vstack((X_3, Q)
= np.vstack ((X_3, Q)

PP
w w

>3
I}

np.hstack ((X_1,X_2))
np.hstack ((X,X_3))

<
Il

p X.shape[1] #number of parameters in full model
betahat = 1stsq(X, y,rcond=None)[0] #estimate under the full model

ym = X @ betahat
X_12 = np.hstack((X_1, X_2)) #omitting the block effect

k = X_12.shape[1] #number of parameters in reduced model
betahat_12 = 1lstsq(X_12, y,rcond=None) [0]

y_12 = X_12 @ betahat_12

T_12=(n-p)/(p-k) *(norm(y-y_12)**2 - norm(y-ym)**2)/norm(y-ym) **2
pval_12 =1 - f.cdf(T_12,p-k,n-p)

X_13 = np.hstack((X_1, X_3)) #omitting the treatment effect

k = X_13.shape[1] #number of parameters in reduced model
betahat_13 = lstsq(X_13, y,rcond=None) [0]

y_13 = X_13 @ betahat_13

T_13=(n-p)/(p-k)*(norm(y-y_13)**2 - norm(y-ym)**2)/norm(y-ym) **2
pval_13 =1 - f.cdf(T_13,p-k,n-p)



https://github.com/DSML-book/Programs/blob/master/Chapter5/crop.py 

186

Inference for Normal Linear Models

= 439

CONFIDENCE
INTERVAL

PREDICTION
INTERVAL

5.4.2 Confidence and Prediction Intervals

As in all supervised learning settings, linear regression is most useful when we wish to
predict how a new response variable will behave on the basis of a new explanatory vector
x. For example, it may be difficult to measure the response variable, but by knowing the
estimated regression line and the value for x, we will have a reasonably good idea what Y
or the expected value of Y is going to be.

Thus, consider a new x and let Y ~ N(x'8, 0?), with B and o unknown. First we
are going to look at the expected value of Y, that is EY = x'f. Since f is unknown, we
51\0 not know EY either. However, we can estimate it via the estimator Y = x' B, where
B ~ N(B, c*(X"X)*), by Theorem 5.3. Being linear in the components of 3, Y therefore
has a normal distribution with expectation x" and variance o?lxTXH2. Let Z ~ N(O, 1)
be the standardized version of Y and V = ||Y — XB|*/0 ~ x2_ ,- Then the random variable

_@B-xB /XX Z
1Y = XBll/\Ji—p)  VIE-Dp)

has, by Corollary C.1, at,_, distribution. After rearranging the identity P(|T'| < #,_p,1-a/2) =
1 — @, where t,_p.1_q)2 is the (1 — @/2) quantile of the t,_, distribution, we arrive at the
stochastic confidence interval

T :

(5.23)

xTﬁ * ty_pi1-a/2 VRSE [lx "X, (5.24)

where we have identified ||Y — X,EIIZ/ (n — p) with RSE. This confidence interval quantifies
the uncertainty in the learner (regression surface).

A prediction interval for a new response Y is different from a confidence interval for
EY. Here the idea is to construct an interval such that Y lies in this interval with a certain
guaranteed probability. Note that now we have two sources of variation:

1. Y ~ N(x"B, 0?) itself is a random variable.
2. Estimating x' via Y brings another source of variation.

We can construct a (1 — ) prediction interval, by finding two random bounds such that
the random variable Y lies between these bounds with probability 1 — a. We can reason as
follows. Firstly, note that ¥ ~ N(x"B,02) and Y ~ N(x" B, o%||x"X*||?) are independent. It
follows that ¥ — Y has a normal distribution with expectation 0 and variance

(1 + [lx "X ). (5.25)

Secondly, letting Z ~ N(O, 1) be the standardized version of ¥ — ?, and repeating the
steps used for the construction of the confidence interval (5.24), we arrive at the prediction
interval

XTB % ty_pi—ajs VRSE V1 + [lxTX*|P. (5.26)

This prediction interval captures the uncertainty from an as-yet-unobserved response as
well as the uncertainty in the parameters of the regression model itself.



Regression

187

B Example 5.7 (Confidence Limits in Simple Linear Regression) The following pro-
gram draws n = 100 samples from a simple linear regression model with parameters
B =1[6,13]" and o = 2, where the x-coordinates are evenly spaced on the interval [0, 1].
The parameters are estimated in the third block of the code. Estimates for f and o are
[6.03,13.09]" and o = 1.60, respectively. The program then proceeds by calculating the
95% numeric confidence and prediction intervals for various values of the explanatory
variable. Figure 5.4 shows the results.

confpred.py

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import t

from numpy.linalg import inv, lstsq, norm
np.random.seed (123)

n = 100

X = np.linspace(0.01,1,100).reshape(n,1)

# parameters

beta = np.array([6,13])

sigma = 2

Xmat = np.hstack((np.ones((n,1)), x)) #design matrix
y = Xmat @ beta + sigma*np.random.randn(n)

# solve the normal equations

betahat = lstsq(Xmat, y,rcond=None) [0]

# estimate for sigma

sqMSE = norm(y - Xmat @ betahat)/np.sqrt(n-2)

tquant = t.ppf(0.975,n-2) # 0.975 quantile
ucl = np.zeros(n) #upper conf. limits

lcl = np.zeros(n) #lower conf. limits

upl = np.zeros(n)

Ipl = np.zeros(n)

rl = np.zeros(n) # (true) regression line
u=20

for i in range(n):
u=-1u+ 1/n;
xvec = np.array([1,ul)
sqc np.sqrt(xvec.T @ inv(Xmat.T @ Xmat) @ xvec)
sqp = np.sqrt(l + xvec.T @ inv(Xmat.T @ Xmat) @ xvec)
rl[i] = xvec.T @ beta;

ucl[i] = xvec.T @ betahat + tquant*sqMSE*sqc;

lcl[i] = xvec.T @ betahat - tquant*sgMSE*sqc;

upl[i] = xvec.T @ betahat + tquant*sqMSE*sqp;

lpl[i] = xvec.T @ betahat - tquant*sgMSE*sqp;
plt.plot(x,y, '.")

plt.plot(x,rl,'b")
plt.plot(x,ucl, 'k:")
plt.plot(x,1lcl, 'k:")
plt.plot(x,upl, 'r--")

plt.plot(x,1lpl, 'r--")



https://github.com/DSML-book/Programs/blob/master/Chapter5/confpred.py

188 Nonlinear Regression Models

20

15 1

10

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.4: The true regression line (blue, solid) and the upper and lower 95% prediction
curves (red, dashed) and confidence curves (dotted). [ |

5.5 Nonlinear Regression Models

So far we have been mostly dealing with linear regression models, in which the predic-
tion function is of the form g(x|B) = x'B. In this section we discuss some strategies for
handling general prediction functions g(x | 8), where the functional form is known up to an
unknown parameter vector . So the regression model becomes

Yi=gx;|B)+e, i=1,...,n, (5.27)

where €1, ..., &, are independent with expectation 0 and unknown variance o2. The model
can be further specified by assuming that the error terms have a normal distribution.

Table 5.3 gives some common examples of nonlinear prediction functions for data tak-
ing values in R.

Table 5.3: Common nonlinear prediction functions for one-dimensional data.

Name g(x|B) B
Exponential ae®* a,b
Power law  ax’ a,b
Logistic (1 + e@bx)7! a,b
Weibull 1 —exp(-x"/a) a,b
Polynomial Y7~ Bix* P, 1B,

The logistic and polynomial prediction functions in Table 5.3 can be readily gener-
alized to higher dimensions. For example, for x € R? a general second-order polynomial
prediction function is of the form

g(x|B) = Bo +B1 X1 + o x2 + P11 X + B X5 + B2 X1 X (5.28)



Regression

189

This function can be viewed as a second-order approximation to a general smooth predic-
tion function g(xi, x,); see also Exercise 4. Polynomial regression models are also called
response surface models. The generalization of the above logistic prediction to R is

gx|B) =1 +e* By, (5.29)

This function will make its appearance in Section 5.7 and later on in Chapters 7 and 9.

The first strategy for performing regression with nonlinear prediction functions is to
extend the feature space to obtain a simpler (ideally linear) prediction function in the ex-
tended feature space. We already saw an application of this strategy in Example 2.1 for
the polynomial regression model, where the original feature u was extended to the feature
vector x = [1,u,u?,...,u""']7, yielding a linear prediction function. In a similar way, the
right-hand side of the polynomial prediction function in (5.28) can be viewed as a linear
function of the extended feature vector ¢(x) = [1, x1, x, x%, xg, x1x2]". The function ¢ is
called a feature map.

The second strategy is to transform the response variable y and possibly also the ex-
planatory variable x such that the transformed variables 'y, x are related in a simpler (ideally
linear) way. For example, for the exponential prediction function y = ae™*, we have
Iny = Ina — bx, which is a linear relation between Iny and [1, x]".

B Example 5.8 (Chlorine) Table 5.4 lists the free chlorine concentration (in mg per liter)
in a swimming pool, recorded every 8 hours for 4 days. A simple chemistry-based model
for the chlorine concentration y as a function of time ¢ is y = ae™’, where a is the initial
concentration and b > 0 is the reaction rate.

Table 5.4: Chlorine concentration (in mg/L) as a function of time (hours).

Hours Concentration Hours Concentration

0 1.0056 56 0.3293
8 0.8497 64 0.2617
16 0.6682 72 0.2460
24 0.6056 80 0.1839
32 0.4735 88 0.1867
40 0.4745 96 0.1688
48 0.3563

The exponential relationship y = a e suggests that a log transformation of y will result
in a linear relationship between Iny and the feature vector [1,¢]7. Thus, if for some given
data (t1,y1), ..., (ty, yn), we plot (¢1,Inyy), ..., (z,,Iny,), these points should approximately
lie on a straight line, and hence the simple linear regression model applies. The left panel of
Figure 5.5 illustrates that the transformed data indeed lie approximately on a straight line.
The estimated regression line is also drawn here. The intercept and slope are 8, = —0.0555
and B; = —0.0190 here. The original (non-transformed) data is shown in the right panel
of Figure 5.5, along with the fitted curve y = @e™, where @ = exp(By) = 0.9461 and
b = —B; = 0.0190.

RESPONSE
SURFACE MODEL

FEATURE MAP



190

Nonlinear Regression Models

0.5 157
0e
1e
= 0.5
z)o >
-1
0.5}
-1.5
R
2 0
0 50 100 0 50 100
t t

Figure 5.5: The chlorine concentration seems to have an exponential decay. B

Recall that for a general regression problem the learner g.(x) for a given training set 7
is obtained by minimizing the training (squared-error) loss

1 n
LGB =~ Z(Yi - g(x;18)). (5.30)
i=1

The third strategy for regression with nonlinear prediction functions is to directly minimize
(5.30) by any means possible, as illustrated in the next example.

B Example 5.9 (Hougen Function) In [7] the reaction rate y of a certain chemical reac-
tion is posited to depend on three input variables: quantities of hydrogen x;, n-pentane x;,
and isopentane x3. The functional relationship is given by the Hougen function:

y = Bi x2 — x3/Bs
L+ By xy + B3y x2 + faxs’
where 31, ..., 35 are the unknown parameters. The objective is to estimate the model para-

meters {f;} from the data, as given in Table 5.5.

Table 5.5: Data for the Hougen function.

X1 X2 X3 Yy X1 X2 X3 y
470 300 10 8.55 470 190 65 4.35
285 80 10 3.79 100 300 54 13.00
470 300 120 4.82 100 300 120 8.50
470 80 120 0.02 100 80 120 0.05
470 80 10 275 285 300 10 11.32
100 190 10 14.39 285 190 120 3.13

100 80 65 254

The estimation is carried out via the least-squares method. The objective function to
minimize is thus

E o 2
&(g(-m)):BZ(y,- P = alPs ) (5.31)

L+ B2 xit + B3 Xip + B4 xi3

i=1



Regression 191
where the {y;} and {x;;} are given in Table 5.5.

This is a highly nonlinear optimization problem, for which standard nonlinear least- =" 414
squares methods do not work well. Instead, one can use global optimization methods such
as CE and SCO (see Sections 3.4.2 and 3.4.3). Using the CE method, we found the minimal = 100

value 0.02299 for the objective function, which is attained at

—_

B =[1.2526, 0.0628, 0.0400, 0.1124, 1.1914]".

5.6 Linear Models in Python

In this section we describe how to define and analyze linear models using Python and the
data science module statsmodels. We encourage the reader to regularly refer back to
the theory in the preceding sections of this chapter, so as to avoid using Python merely
as a black box without understanding the underlying principles. To run the code start by
importing the following code snippet:

import matplotlib.pyplot as plt

import pandas as pd

import statsmodels.api as sm

from statsmodels.formula.api import ols

5.6.1 Modeling

Although specifying a normal® linear model in Python is relatively easy, it requires some
subtlety. The main thing to realize is that Python treats quantitative and qualitative (that
is, categorical) explanatory variables differently. In statsmodels, ordinary least-squares
linear models are specified via the function ols (short for ordinary least-squares). The
main argument of this function is a formula of the form

y~x1+x2+---+xd, (5.32)

where y is the name of the response variable and x1, ..., xd are the names of the explan-
atory variables. If all variables are quantitative, this describes the linear model

Yi=Bo+pPixu +Poxpp+ -+ Paxiu+&, i=1,...,n, (5.33)

where x;; is the j-th explanatory variable for the i-th observation and the errors g; are
independent normal random variables such that Ee; = 0 and Varg; = 0. Or, in matrix
form: Y = XB + g, with

I xi1 - X
Y1 :80 &
. I xa -o0 g . .
Y= ) X = . . . i ﬁ =1:1, and & =
Y . . . . 8
" 1 Xnl  *°° Xnd d "

3For the rest of this section, we assume all linear models to be normal



192 Linear Models in Python

Thus, the first column is always taken as an “intercept” parameter, unless otherwise spe-
cified. To remove the intercept term, add -1 to the ols formula, as in 01s(’y~x-1").
For any linear model, the model matrix can be retrieved via the construction:

model_matrix = pd.DataFrame(model.exog,columns=model.exog_names)

Let us look at some examples of linear models. In the first model the variables x1 and x2
are both considered (by Python) to be quantitative.

myData = pd.DataFrame({'y' : [10,9,4,2,4,9],
'x1'" : [7.4,1.2,3.1,4.8,2.8,6.5],
'x2' : [1,1,2,2,3,31D)

mod = ols("y~x1+x2", data=myData)
mod_matrix = pd.DataFrame (mod.exog,columns=mod.exog_names)
print (mod_matrix)

Intercept x1 X2
0 1.0 7.4 1.0
1 1.0 1.2 1.0
2 1.0 3.1 2.0
3 1.0 4.8 2.0
4 1.0 2.8 3.0
5 1.0 6.5 3.0

Suppose the second variable is actually qualitative; e.g., it represents a color, and the
levels 1, 2, and 3 stand for red, blue, and green. We can account for such a categorical
= 3 variable by using the astype method to redefine the data type (see Section 1.2).

myData['x2'] = myData['x2'].astype('category')

Alternatively, a categorical variable can be specified in the model formula by wrapping
it with C(). Observe how this changes the model matrix.

mod2 = ols("y~x1+C(x2)", data=myData)
mod2_matrix = pd.DataFrame (mod2.exog,columns=mod2.exog_names)
print (mod2_matrix)

Intercept C(x2)[T.2] C(x2)[T.3] x1
0 1.0 0.0 0.0 7.4
1 1.0 0.0 0.0 1.2
2 1.0 1.0 0.0 3.1
3 1.0 1.0 0.0 4.8
4 1.0 0.0 1.0 2.8
5 1.0 0.0 1.0 6.5

Thus, if a statsmodels formula of the form (5.32) contains factor (qualitative) variables,
the model is no longer of the form (5.33), but contains indicator variables for each level of
the factor variable, except the first level.

For the case above, the corresponding linear model is

Yi=fo+pfixn+arMxp =2} +asl{xp =3} +g, i=1,...,6, (5.34)



Regression 193
where we have used parameters @, and a3 to correspond to the indicator features of the
qualitative variable. The parameter @, describes how much the response is expected to
change if the factor x, switches from level 1 to 2. A similar interpretation holds for a;.
Such parameters can thus be viewed as incremental effects.

It is also possible to model interaction between two variables. For two continuous INTERACTION
variables, this simply adds the products of the original features to the model matrix. Adding
interaction terms in Python is achieved by replacing “+” in the formula with “*”, as the
following example illustrates.

mod3 = ols("y~x1*C(x2)", data=myData)
mod3_matrix = pd.DataFrame (mod3.exog,columns=mod3.exog_names)
print (mod3_matrix)

Intercept C(x2)[T.2] C(x2)[T.3] x1 x1:C(x2)[T.2] =x1:C(x2)[T.3]
0 1.0 0.0 0.0 7.4 0.0 0.0
1 1.0 0.0 0.0 1.2 0.0 0.0
2 1.0 1.0 0.0 3.1 3.1 0.0
3 1.0 1.0 0.0 4.8 4.8 0.0
4 1.0 0.0 1.0 2.8 0.0 2.8
5 1.0 0.0 1.0 6.5 0.0 6.5
5.6.2 Analysis
Let us consider some easy linear regression models by using the student survey data set
survey.csv from the book’s GitHub site, which contains measurements such as height,
weight, sex, etc., from a survey conducted among n = 100 university students. Suppose we
wish to investigate the relation between the shoe size (explanatory variable) and the height
(response variable) of a person. First, we load the data and draw a scatterplot of the points
(height versus shoe size); see Figure 5.6 (without the fitted line).
survey = pd.read_csv('survey.csv')
plt.scatter(survey.shoe, survey.height)
plt.xlabel ("Shoe size")
plt.ylabel ("Height")

We observe a slight increase in the height as the shoe size increases, although this
relationship is not very distinct. We analyze the data through the simple linear regression
model Y; = By + B1x; + &,i = 1,...,n. In statsmodels this is performed via the ols = 169

method as follows:

model = ols("height~shoe", data=survey) # define the model
fit = model.fit() #fit the model defined above

b®, bl = fit.params

print (fit.params)

Intercept 145.777570
shoe 1.004803
dtype: float64



https://github.com/DSML-book/Programs/blob/master/Chapter5/survey.csv

194 Linear Models in Python

15 20 25 30 35
Shoe size

Figure 5.6: Scatterplot of height (cm) against shoe size (cm), with the fitted line.

The above output gives the least-squares estimates of 8 and ;. For this example, we
have By = 145.778 and B; = 1.005. Figure 5.6, which includes the regression line, was
obtained as follows:

plt.plot(survey.shoe, b0® + bl*survey.shoe)
plt.scatter(survey.shoe, survey.height)
plt.xlabel ("Shoe size")

plt.ylabel ("Height")

Although ols performs a complete analysis of the linear model, not all its calculations
need to be presented. A summary of the results can be obtained with the method summary.

print (fit.summary())
Dep. Variable: height R-squared: 0.178
Model: OLS Adj. R-squared: 0.170
Method: Least Squares F-statistic: 21.28
No. Observations: 100 Prob (F-statistic): 1.20e-05
Df Residuals: 98 Log-Likelihood: -363.88
Df Model: 1 AIC: 731.8
Covariance Type: nonrobust BIC: 737.0
coef std err t P>|t]| [0.025 0.975]
Intercept 145.7776 5.763 25.296 0.000 134.341 157.214
shoe 1.0048 0.218 4.613 0.000 0.573 1.437
Omnibus: 1.958 Durbin-Watson: 1.772
Prob (Omnibus) : 0.376 Jarque-Bera (JB): 1.459
Skew: -0.072 Prob (JB): 0.482
Kurtosis: 2.426 Cond. No. 164.

The main output items are the following:



Regression

195

e coef: Estimates of the parameters of the regression line.

e std error: Standard deviations of the estimators of the regression line. These are
the square roots of the variances of the {3;} obtained in (5.25).

e t: Realization of Student’s test statistics associated with the hypotheses Hy : g; = 0
and H, : B; # 0, i = 0, 1. In particular, the outcome of 7" in (5.19).

e P>|t|: P-value of Student’s test (two-sided test).
e [0.025 0.975]: 95% confidence intervals for the parameters.

e R-Squared: Coefficient of determination R? (percentage of variation explained by
the regression), as defined in (5.18).

e Adj. R-Squared: adjusted R? (explained in Section 5.3.7).
e F-statistic: Realization of the F test statistic (5.21) associated with testing the
full model against the default model. The associated degrees of freedom (Df Model

=1 and Df Residuals =n—2) are given, as is the P-value: Prob (F-statistic).

e AIC: The AIC number in (5.15); that is, minus two times the log-likelihood plus two
times the number of model parameters (which is 3 here).

You can access all the numerical values as they are attributes of the fit object. First
check which names are available, as in:

dir(fit)

Then access the values via the dot construction. For example, the following extracts the
P-value for the slope.

fit.pvalues[1]

1.1994e-05

The results show strong evidence for a linear relationship between shoe size and height
(or, more accurately, strong evidence that the slope of the regression line is not zero), as
the P-value for the corresponding test is very small (1.2 - 107°). The estimate of the slope
indicates that the difference between the average height of students whose shoe size is
different by one cm is 1.0048 cm.

Only 17.84% of the variability of student height is explained by the shoe size. We
therefore need to add other explanatory variables to the model (multiple linear regression)
to increase the model’s predictive power.

= 186

= 183

= 181

5 183

= 177



196

Linear Models in Python

5.6.3 Analysis of Variance (ANOVA)

We continue the student survey example of the previous section, but now add an extra
variable, and also consider an analysis of variance of the model. Instead of “explaining”
the student height via their shoe size, we include weight as an explanatory variable. The
corresponding ols formula for this model is

height~shoe + weight,
meaning that each random height, denoted by Height, satisfies
Height = By + B;shoe + Brweight + &,

where & is a normally distributed error term with mean 0 and variance o-%. Thus, the model
has 4 parameters. Before analyzing the model we present a scatterplot of all pairs of vari-
ables, using scatter_matrix.

model = ols("height~shoe+weight", data=survey)
fit = model.fit(Q)
axes = pd.plotting.scatter_matrix(

survey[[ 'height', 'shoe', 'weight']])

plt.show ()

50

n
~

height shoe weight

o o
o

o
o
~—

150 A

Figure 5.7: Scatterplot of all pairs of variables: height (cm), shoe (cm), and weight (kg).

As for the simple linear regression model in the previous section, we can analyze the
model using the summary method (below we have omitted some output):

fit.summary ()




Regression 197
Dep. Variable: height R-squared: 0.430
Model: OLS Adj. R-squared: 0.418
Method: Least Squares F-statistic: 36.61
No. Observations: 100 Prob (F-statistic): 1.43e-12
Df Residuals: 97 Log-Likelihood: -345.58
Df Model: 2 AIC: 697.2
BIC 705.0
coef std err t P>|t]| [0.025 0.975]
Intercept 132.2677 5.247 25.207 0.000 121.853 142.682
shoe 0.5304 0.196 2.703 0.008 0.141 0.920
weight 0.3744 0.057 6.546 0.000 0.261 0.488

The F-statistic is used to test whether the full model (here with two explanatory
variables) is better at “explaining” the height than the default model. The corresponding
null hypothesis is Hy : 81 = > = 0. The assertion of interest is H;: at least one of the coeffi-
cients 8; (j = 1,2) is significantly different from zero. Given the result of this test (P-value
= 1.429-107!2), we can conclude that at least one of the explanatory variables is associated
with height. The individual Student tests indicate that:

e shoe size is linearly associated with student height, after adjusting for weight, with
P-value 0.0081. At the same weight, an increase of one cm in shoe size corresponds
to an increase of 0.53 cm in average student height;

e weight is linearly associated with student height, after adjusting for shoe size (the
P-value is actually 2.82 - 10~%; the reported value of 0.000 should be read as “less
than 0.001). At the same shoe size, an increase of one kg in weight corresponds to
an increase of 0.3744 cm in average student height.

Further understanding is extracted from the model by conducting an analysis of vari-
ance. The standard statsmodels function is anova_lm. The input to this function is the
fit object (obtained from model . fit()) and the output is a DataFrame object.

table = sm.stats.anova_lm(fit)
print(table)

df sum_sq mean_sq F PR(>F)
shoe 1.0 1840.467359 1840.467359 30.371310 2.938651e-07
weight 1.0 2596.275747 2596.275747 42.843626 2.816065e-09
Residual 97.0 5878.091294 60.598879 NaN NaN

The meaning of the columns is as follows.

e df: The degrees of freedom of the variables, according to the sum of squares decom-
position (5.17). As both shoe and weight are quantitative variables, their degrees
of freedom are both 1 (each corresponding to a single column in the overall model
matrix). The degrees of freedom for the residuals is n — p = 100 — 3 = 97.

e sum_sq: The sum of squares according to (5.17). The total sum of squares is the
sum of all the entries in this column. The residual error in the model that cannot be
explained by the variables is RSS ~ 5878.

= 181



198

Linear Models in Python

= 182

1= (84

= 186

e mean_sq: The sum of squares divided by their degrees of freedom. Note that the
residual square error RSE = RSS/(n — p) = 60.6 is an unbiased estimate of the
model variance o2; see Section 5.4.

e F: These are the outcomes of the test statistic (5.22).

e PR(>F): These are the P-values corresponding to the test statistic in the preceding
column and are computed using an F distribution whose degrees of freedom are
given in the df column.

The ANOVA table indicates that the shoe variable explains a reasonable amount of the
variation in the model, as evidenced by a sum of squares contribution of 1840 out of 1840+
259645878 = 10314 and a very small P-value. After shoe is included in the model, it turns
out that the weight variable explains even more of the remaining variability, with an even
smaller P-value. The remaining sum of squares (5878) is 57% of the total sum of squares,
yielding a 43% reduction, in accordance with the R? value reported in the summary for the
ols method. As mentioned in Section 5.4.1, the order in which the ANOVA is conducted
is important. To illustrate this, consider the output of the following commands.

model = ols("height~weight+shoe", data=survey)
fit = model.fit()
table = sm.stats.anova_lm(fit)
print(table)

df sum_sq mean_sq F PR(>F)
weight 1.0 3993.860167 3993.860167 65.906502 1.503553e-12
shoe 1.0 442.882938 442 .882938 7.308434 8.104688e-03
Residual 97.0 5878.091294 60.598879 NaN NaN

We see that weight as a single model variable explains much more of the variability
than shoe did. If we now also include shoe, we only obtain a small (but according to the
P-value still significant) reduction in the model variability.

5.6.4 Confidence and Prediction Intervals

In statsmodels a method for computing confidence or prediction intervals from a dic-
tionary of explanatory variables is get_prediction. It simply executes formula (5.24) or
(5.26). A simpler version is predict, which only returns the predicted value.

Continuing the student survey example, suppose we wish to predict the height of a
person with shoe size 30 cm and weight 75 kg. Confidence and prediction intervals can
be obtained as given in the code below. The new explanatory variable is entered as a dic-
tionary. Notice that the 95% prediction interval (for the corresponding random response) is
much wider than the 95% confidence interval (for the expectation of the random response).

X = {'"shoe': [30.0], 'weight': [75.0]} # new input (dictionary)
pred = fit.get_prediction(x)
pred.summary_frame (alpha=0.05) .unstack ()




Regression

199

mean 0 176.261722 # predicted value
mean_se 0 1.054015

mean_ci_lower O 174.169795 # lower bound for CI
mean_ci_upper 0 178.353650 # upper bound for CI
obs_ci_lower 0 160.670610 # lower bound for PI
obs_ci_upper 0 191.852835 # upper bound for PI
dtype: float64

5.6.5 Model Validation

We can perform an analysis of residuals to examine whether the underlying assumptions
of the (normal) linear regression model are verified. Various plots of the residuals can be
used to inspect whether the assumptions on the errors {g;} are satisfied. Figure 5.8 gives two
such plots. The first is a scatterplot of the residuals {e;} against the fitted valuesy;. When the
model assumptions are valid, the residuals, as approximations of the model error, should
behave approximately as iid normal random variables for each of the fitted values, with a
constant variance. In this case we see no strong aberrant structure in this plot. The residuals
are fairly evenly spread and symmetrical about the y = O line (not shown). The second plot
is a quantile—quantile (or qq) plot. This is a useful way to check for normality of the error
terms, by plotting the sample quantiles of the residuals against the theoretical quantiles
of the standard normal distribution. Under the model assumptions, the points should lie
approximately on a straight line. For the current case there does not seem to be an extreme
departure from normality. Drawing a histogram or density plot of the residuals will also
help to verify the normality assumption. The following code was used.

plt.plot(fit.fittedvalues, fit.resid,'.")
plt.xlabel("fitted values")
plt.ylabel("residuals")
sm.qgplot(fit.resid)

20 - 20 ‘
15| ‘ee ° 15| o
10} ‘. 10}
-4 % * . . . - $
LY ® . L] = 5
L :-u . €
% ] .0. <, . c.- ¢ . % 0
> e%%q, « %, 3
o - L LIt . o
@ -5 R LS v -5
g N . as a
_10 T LI £ -10 /
. ©
-15 . V _15 ]
L] L
—20| . . =20} °®
— 5 | | _25 ! | | | |
155 160 165 170 175 180 185 190 195 -3 -2 -1 0 1 2

fitted values Theoretical Quantiles

Figure 5.8: Left: residuals against fitted values. Right: a qq plot of the residuals. Neither
shows clear evidence against the model assumptions of constant variance and normality.



200

Linear Models in Python

=13

5.6.6 Variable Selection

Among the large number of possible explanatory variables, we wish to select those which
best explain the observed responses. By eliminating redundant explanatory variables, we
reduce the statistical error without increasing the approximation error, and thus reduce the
(expected) generalization risk of the learner.

In this section, we briefly present two methods for variable selection. They are illus-
trated on a few variables from the data set discussed in Section 1.5.3.2. The data
set contains information on the birth weights (masses) of babies, as well as various char-
acteristics of the mother, such as whether she smokes, her age, etc. We wish to explain
the child’s weight at birth using various characteristics of the mother, her family history,
and her behavior during pregnancy. The response variable is weight at birth (quantitative
variable bwt, expressed in grams); the explanatory variables are given below.

The data can be obtained as explained in Section 1.5.3.2, or from statsmodels in the
following way:

bwt = sm.datasets.get_rdataset("birthwt","MASS").data

Here is some information about the explanatory variables that we will investigate.

age: mother's age in years

lwt: mother's weight in lbs

race: mother's race (1 = white, 2 = black, 3 = other)
smoke: smoking status during pregnancy (0 = no, 1 = yes)

ptl: no. of previous premature labors

ht: history of hypertension (0 = no, 1 = yes)

ui: presence of uterine irritability (® = no, 1 = yes)
ftv: no. of physician visits during first trimester

bwt: birth weight in grams

We can see the structure of the variables via bwt.info(). Check yourself that all
variables are defined as quantitative (int64). However, the variables race, smoke, ht,
and ui should really be interpreted as qualitative (factors). To fix this, we could redefine
them with the method astype, similar to what we did in Chapter 1. Alternatively, we could
use the C() construction in a statsmodels formula to let the program know that certain
variables are factors. We will use the latter approach.

For binary features it does not matter whether the variables are interpreted as
factorial or numerical as the numerical and summary results are identical.

We consider the explanatory variables 1wt, age, ui, smoke, ht, and two recoded binary
variables ftvl and pt11. We define ftv1l = 1 if there was at least one visit to a physician,
and ftvl = 0 otherwise. Similarly, we define pt11 = 1 if there is at least one preterm birth
in the family history, and pt11 = O otherwise.



Regression

201

ftvl
ptll

(bwt['ftv']>=1).astype(int)
(bwt['ptl']>=1).astype(int)

5.6.6.1 Forward Selection and Backward Elimination

The forward selection method is an iterative method for variable selection. In the first
iteration we consider which feature £1 is the most significant in terms of its P-value in the
models bwt~f1, with £1 € {1wt, age,...}. This feature is then selected into the model. In
the second iteration, the feature £2 that has the smallest P-value in the models bwt~f1+ £2
is selected, where £2 # f1, and so on. Usually only features are selected that have a P-
value of at most 0.05. The following Python program automates this procedure. Instead of
selecting on the P-value one could select on the AIC or BIC value.

forwardselection.py

import statsmodels.api as sm
from statsmodels. formula.api import ols

bwt = sm.datasets.get_rdataset("birthwt","MASS").data
ftvl = (bwt['ftv']>=1).astype(int)
ptll = (bwt['ptl']>=1).astype(int)

remaining_features = {'lwt', 'age', 'C(ui)', 'smoke',
'Ccht) ', 'ftvl', 'ptll'}
selected_features = []
while remaining_features:
PF = [] #list of (P value, feature)
for f in remaining_features:
temp = selected_features + [f] #temporary list of features
formula = 'bwt~' + '+'.join(temp)
fit = ols(formula,data=bwt).fit()
pval= fit.pvalues[-1]
if pval < 0.05:
PF.append((pval, £))
if PF: #if not empty
PF.sort(reverse=True)
(best_pval, best_f) = PF.pop(Q)
remaining_features.remove (best_f)
print (' feature {} with P-value = {:.2E}'.
format (best_f, best_pval))
selected_features.append(best_f)
else:
break

7.52E-05

1.08E-02
.01E-03

7.27E-03

feature C(ui) with P-value
feature CCht) with P-value
feature lwt with P-value =
feature smoke with P-value

I o 1

In backward elimination we start with the complete model (all features included) and
at each step, we remove the variable with the highest P-value, as long as it is not significant
(greater than 0.05). We leave it as an exercise to verify that the order in which the fea-

FORWARD
SELECTION

BACKWARD
ELIMINATION


https://github.com/DSML-book/Programs/blob/master/Chapter5/forwardselection.py

202

Linear Models in Python

tures are removed is: age, ftvl, and ptl1. In this case, forward selection and backward
elimination result in the same model, but this need not be the case in general.

This way of model selection has the advantage of being easy to use and of treating the
question of variable selection in a systematic manner. The main drawback is that variables
are included or deleted based on purely statistical criteria, without taking into account the
aim of the study. This usually leads to a model which may be satisfactory from a statistical
point of view, but in which the variables are not necessarily the most relevant when it comes
to understanding and interpreting the data in the study.

Of course, we can choose to investigate any combination of features, not just the ones
suggested by the above variable selection methods. For example, let us see if the mother’s
weight, her age, her race, and whether she smokes explain the baby’s birthweight.

formula = 'bwt~lwt+age+C(race)+ smoke'
bwt_model = ols(formula, data=bwt).fit()
print (bwt_model . summary ())
OLS Regression Results

Dep. Variable: bwt R-squared: 0.148
Model: OLS Adj. R-squared: 0.125
Method: Least Squares F-statistic: 6.373
No. Observations: 189 Prob (F-statistic): 1.76e-05
Df Residuals: 183 Log-Likelihood: -1498.4
Df Model: 5 AIC: 3009.

BIC: 3028.

coef std err t P>|t| [0.025 0.975]

Intercept 2839.4334 321.435 8.834 0.000 2205.239 3473.628
C(race)[T.2] -510.5015 157.077 -3.250 0.001 -820.416 -200.587
C(race)[T.3] -398.6439 119.579 -3.334 0.001 -634.575 -162.713
smoke -401.7205 109.241 -3.677 0.000 -617.254 -186.187
lwt 3.9999 1.738 2.301 0.022 0.571 7.429
age -1.9478 9.820 -0.198 0.843 -21.323 17.427
Omnibus: 3.916 Durbin-Watson: 0.458
Prob(Omnibus): 0.141 Jarque-Bera (JB): 3.718
Skew: -0.343 Prob(JB): 0.156
Kurtosis: 3.038 Cond. No. 899.

Given the result of Fisher’s global test given by Prob (F-Statistic) in the summary
(P-value = 1.76 x 1073), we can conclude that at least one of the explanatory variables is
associated with child weight at birth, after adjusting for the other variables. The individual
Student tests indicate that:

e the mother’s weight is linearly associated with child weight, after adjusting for age,
race, and smoking status (P-value = 0.022). At the same age, race, and smoking
status, an increase of one pound in the mother’s weight corresponds to an increase
of 4 g in the average child weight at birth;

e the age of the mother is not significantly linearly associated with child weight at
birth, when mother weight, race, and smoking status are already taken into account



Regression

203

(P-value = 0.843);

e weight at birth is significantly lower for a child born to a mother who smokes, com-
pared to children born to non-smoking mothers of the same age, race, and weight,
with a P-value of 0.00031 (to see this, inspect bwt_model .pvalues). At the same
age, race, and mother weight, the child’s weight at birth is 401.720 g less for a
smoking mother than for a non-smoking mother;

e regarding the interpretation of the variable race, we note that the first level of this
categorical variable corresponds to white mothers. The estimate of —510.501 g for
C(race) [T.2] represents the difference in the child’s birth weight between black
mothers and white mothers (reference group), and this result is significantly different
from zero (P-value = 0.001) in a model adjusted for the mother’s weight, age, and
smoking status.

5.6.6.2 Interaction

We can also include interaction terms in the model. Let us see whether there is any inter-
action effect between smoke and age via the model

Bwt = 5y + B1age + B,smoke + S3age X smoke + €.

In Python this can be done as follows (below we have removed some output):

formula = 'bwt~age*smoke'
bwt_model = ols(formula, data=bwt).fit()
print (bwt_model . summary ())

OLS Regression Results
Dep. Variable: bwt R-squared: 0.069
Model: OLS Adj. R-squared: 0.054
Method: Least Squares F-statistic: 4.577
No. Observations: 189 Prob (F-statistic): 0.00407
Df Residuals: 183 Log-Likelihood: -1506.8
Df Model: 5 AIC: 3009.

BIC: 3028.

coef std err t P>|t] [0.025 0.975]

Intercept 2406.1 292.190 8.235 0.000 1829.6 2982.5
smoke 798.2 484.342 1.648 0.101 -157.4 1753.7
age 27.7 12.149 2.283 0.024 3.8 51.7
age: smoke -46.6 20.447 -2.278 0.024 -86.9 -6.2

We observe that the estimate for 83 (—46.6) is significantly different from zero (P-value
= 0.024). We therefore conclude that the effect of the mother’s age on the child’s weight
depends on the smoking status of the mother. The results on association between mother
age and child weight must therefore be presented separately for the smoking and the non-
smoking group. For non-smoking mothers (smoke = 0), the mean child weight at birth
increases on average by 27.7 grams for each year of the mother’s age. This is statistically



204

Generalized Linear Models

GENERALIZED
LINEAR MODEL

ACTIVATION
FUNCTION

LINK FUNCTION

significant, as can be seen from the 95% confidence intervals for the parameters (which
does not contain zero):

bwt_model.conf_int ()

0 1
Intercept 1829.605754 2982.510194
age 3.762780 51.699977
smoke -157.368023 1753.717779
age:smoke -86.911405 -6.232425

Similarly, for smoking mothers, there seems to be a decrease in birthweight, El + ,B’; =
27.7 —46.6 = —18.9, but this is not statistically significant; see Exercise 6.

5.7 Generalized Linear Models

The normal linear model in Section 2.8 deals with continuous response variables — such
as height and crop yield — and continuous or discrete explanatory variables. Given the
feature vectors {x;}, the responses {Y;} are independent of each other, and each has a normal
distribution with mean xl.Tﬂ, where xl.T is the i-th row of the model matrix X. Generalized
linear models allow for arbitrary response distributions, including discrete ones.

Definition 5.2: Generalized Linear Model

In a generalized linear model (GLM) the expected response for a given feature vec-
tor x = [xy,...,x,]" is of the form

E[Y|X = x] = h(x"B) (5.35)

for some function A, which is called the activation function. The distribution of
Y (for a given x) may depend on additional dispersion parameters that model the
randomness in the data that is not explained by x.

The inverse of function 4 is called the link function. As for the linear model, (5.35) is
a model for a single pair (x, Y). Using the model simplification introduced at the end of
Section 5.1, the corresponding model for a whole training set 7 = {(x;, Y;)} is that the {x;}
are fixed and that the {Y;} are independent; each Y; satisfying (5.35) with x = x;. Writing

Y =[Yy,...,Y,]" and defining & as the multivalued function with components %, we have
ExY = h(Xp),

where X is the (model) matrix with rows xlT,...,x;. A common assumption is that

Yy,...,Y, come from the same family of distributions, e.g., normal, Bernoulli, or Pois-

son. The central focus is the parameter vector 8, which summarizes how the matrix of
explanatory variables X affects the response vector Y. The class of generalized linear mod-
els can encompass a wide variety of models. Obviously the normal linear model (2.34) is
a generalized linear model, with E[Y | X = x] = x7, so that / is the identity function. In
this case, Y ~ N(x"B,0?%), i = 1,...,n, where o is a dispersion parameter.



Regression

205

B Example 5.10 (Logistic Regression) In a logistic regression or logit model, we as-
sume that the response variables Y, ..., Y, are independent and distributed according to
Y; ~ Ber(h(x;B)), where h here is defined as the cdf of the logistic distribution:

1

h(x) = .
) I+e~

Large values of x B thus lead to a high probability that ¥; = 1, and small (negative) values
of x/ B cause Y; to be 0 with high probability. Estimation of the parameter vector B from
the observed data is not as straightforward as for the ordinary linear model, but can be
accomplished via the minimization of a suitable training loss, as explained below.

As the {Y;} are independent, the pdf of Y = [Y;,...,7Y,]" is

n

8w |ﬁ’ X) = l_[[h(x;—ﬁ)]yl[l - h(xl—»rﬁ)]l_)’i.

i=1

Maximizing the log-likelihood In g(y | 8, X) with respect to B gives the maximum likeli-
hood estimator of B. In a supervised learning framework, this is equivalent to minimizing:

1 1 ¢
~—Ingy|B.X) =~ > Ingly|B.x)
" (5.36)
1 ¢ '
==~ > DiInhGB) + (1 = y) In(1 = h(x]B)].
n i=1

By comparing (5.36) with (4.4), we see that we can interpret (5.36) as the cross-entropy
training loss associated with comparing a true conditional pdf f(y|x) with an approxima-
tion pdf g(y| B, x) via the loss function

Loss(f(y1x),g(y|B,x)) := —Ing(y|B,x) = —yInh(x"B) — (1 — y) In(1 — h(x"p)).

Minimizing (5.36) in terms of B actually constitutes a convex optimization problem. Since
Ini(x"B) = —In(1 + e*'#) and In(1 — h(x"B)) = —x"B — In(1 + e *'#), the cross-entropy
training loss (5.36) can be rewritten as
IS .
() = — Z [ = yx7 B +1n(1+eF)].

n
i=1

We leave it as Exercise 7 to show that the gradient Vr () and Hessian H(B) of r.(B) are
given by

1 n
V)=~ ;wi — ¥ X; (5.37)
and

1 n
H(p) = ZZ#:‘(I — U)X X;, (5.38)
i=1

respectively, where y; := h(xB).
Notice that H(B) is a positive semidefinite matrix for all values of 8, implying the

LOGISTIC
REGRESSION

LOGISTIC
DISTRIBUTION

5 123

=" 403



206 Generalized Linear Models
convexity of r.(8). Consequently, we can find an optimal g efficiently; e.g., via Newton’s
=" 409 method. Specifically, given an initial value B, for 7 = 1,2, ..., iteratively compute
B =B ~H ' (B_) VB, (5:39)

until the sequence B, B, 0,. ... 1s deemed to have converged, using some pre-fixed con-
vergence criterion.

Figure 5.9 shows the outcomes of 100 independent Bernoulli random variables, where
each success probability, (1 +exp(—(8y +8:x)))"!, depends on x and By = -3, B; = 10. The
true logistic curve is also shown (dashed line). The minimum training loss curve (red line)
is obtained via the Newton scheme (5.39), giving estimates ,[/3?) = —2.66 and ,El = 10.08.
The Python code is given below.

1
0.8
0.6
0.4

0.2

Figure 5.9: Logistic regression data (blue dots), fitted curve (red), and true curve (black
dashed).

logregld.py

import numpy as np
import matplotlib.pyplot as plt
from numpy.linalg import 1lstsq

n = 100 # sample size

X = (2*np.random.rand(n)-1) .reshape(n,1) # explanatory variables
beta = np.array([-3, 10])

Xmat = np.hstack((np.ones((n,1)), x))

p =1/(1 + np.exp(-Xmat @ beta))

y = np.random.binomial (1,p,n) # response variables

# initial guess
betat = 1lstsq((Xmat.T @ Xmat),Xmat.T @ y, rcond=None) [0]

grad = np.array([2,1]) # gradient

while (np.sum(np.abs(grad)) > le-5) : # stopping criteria
mu = 1/(l+np.exp(-Xmat @ betat))
# gradient
delta = (mu - y).reshape(n,l)



https://github.com/DSML-book/Programs/blob/master/Chapter5/logreg1d.py

Regression

207

grad = np.sum(np.multiply( np.hstack((delta,delta)),Xmat), axis
=0).T

# Hessian

H = Xmat.T @ np.diag(np.multiply(mu,(l-mu))) @ Xmat

betat = betat - lstsq(H,grad,rcond=None) [0]

print (betat)

plt.plot(x,y, '.') # plot data

XX = np.linspace(-1,1,40).reshape(40,1)

XXmat = np.hstack( (np.ones((len(xx),1)), xx))

yy = 1/(1 + np.exp(-XXmat @ beta))

plt.plot(xx,yy,'r-") #true logistic curve
yy = 1/(1 + np.exp(-XXmat @ betat));

plt.plot(xx,yy, 'k--")

Further Reading

An excellent overview of regression is provided in [33] and an accessible mathematical
treatment of /inear regression models can be found in [108]. For extensions to nonlinear
regression we refer the reader to [7]. A practical introduction to multilevel/hierarchical
models is given in [47]. For further discussion on regression with discrete responses (clas-
sification) we refer to Chapter 7 and the further reading therein. On the important question
of how to handle missing data, the classic reference is [80] (see also [85]) and a modern
applied reference is [120].

Exercises

1. Following his mentor Francis Galton, the mathematician/statistician Karl Pearson con-
ducted comprehensive studies comparing hereditary traits between members of the same
family. Figure 5.10 depicts the measurements of the heights of 1078 fathers and their
adult sons (one son per father). The data is available from the book’s GitHub site as
pearson.csv.

(a) Show that sons are on average 1 inch taller than the fathers.

(b) We could try to “explain” the height of the son by taking the height of his father and
adding 1 inch. The prediction line y = x + 1 (red dashed) is given Figure 5.10. The
black solid line is the fitted regression line. This line has a slope less than 1, and

demonstrates Galton’s “regression” to the average. Find the intercept and slope of the
fitted regression line.

2. For the simple linear regression model, show that the values for El and 73;0 that solve the

5 251


https://github.com/DSML-book/Programs/blob/master/Chapter5/pearson.csv

208

Exercises

Height Son (in)

58 60 62 64 66 68 70 72 74 76
Height Father (in)

Figure 5.10: A scatterplot of heights from Pearson’s data.

equations (5.9) are:

E _ S =)0 —y)
SR YN E 0

(5.40)

Bo=y-Bi%, (5.41)
provided that not all x; are the same.

3. Edwin Hubble discovered that the universe is expanding. If v is a galaxy’s recession ve-
locity (relative to any other galaxy) and d is its distance (from that same galaxy), Hubble’s
law states that

v=Hd,

where H is known as Hubble’s constant. The following are distance (in millions of light-
years) and velocity (thousands of miles per second) measurements made on five galactic
clusters.

distance‘ 68 137 315 405 700
velocity ‘ 24 47 120 144 260

State the regression model and estimate H.

4. The multiple linear regression model (5.6) can be viewed as a first-order approximation
of the general model
Y =g(x) +¢, (5.42)

where Ee =0, Vare = 0%, and g(x) is some known or unknown function of a d-
dimensional vector x of explanatory variables. To see this, replace g(x) with its first-order
Taylor approximation around some point x, and write this as By + x' 8. Express By and
in terms of g and x,.



Regression

209

5. Table 5.6 shows data from an agricultural experiment where crop yield was measured
for two levels of pesticide and three levels of fertilizer. There are three responses for each
combination.

Table 5.6: Crop yields for pesticide and fertilizer combinations.

Fertilizer
Pesticide Low Medium High
No 3.23,3.20, 3.16 2.99,2.85,2.77 5.72,5.77,5.62
Yes 6.78, 6.73, 6.79 9.07, 9.09, 8.86 8.12, 8.04, 8.31

(a) Organize the data in standard form, where each row corresponds to a single meas-
urement and the columns correspond to the response variable and the two factor vari-
ables.

(b) Let Y;j be the response for the k-th replication at level i for factor 1 and level j
for factor 2. To assess which factors best explain the response variable, we use the
ANOVA model

Yijg =+ i+ Bj+vij + Eiji (5.43)

where Y, @; = 3;8; = X;vij = X;vij = 0. Define B = [u, a1, @2, B1, 82, B3, Y11, Y12,
Y13, Y21, Y22, Y231 | . Give the corresponding 18 X 12 model matrix.

(c) Note that the parameters are linearly dependent in this case. For example, a, = —a;
and y13 = =(y11 + y12)- To retain only 6 linearly independent variables consider the
6-dimensional parameter vector B = [u, a1, 1,2, V11> v12]". Find the matrix M such
that Mg = .

(d) Give the model matrix corresponding to E

6. Show that for the birthweight data in Section 5.6.6.2 there is no significant decrease
in birthweight for smoking mothers. [Hint: create a new variable nonsmoke = 1-smoke,
which reverses the encoding for the smoking and non-smoking mothers. Then, the para-
meter B, + 33 in the original model is the same as the parameter §; in the model

Bwt = 3y + B1age + B,nonsmoke + S3age X nonsmoke + &.
Now find a 95% for 85 and see if it contains zero.]
7. Prove (5.37) and (5.38).

8. In the Tobit regression model with normally distributed errors, the response is modeled
as:

; Z ~ N(XB,071,),

Y. = Z; iflxtl'<Zi
t u;, ifZ,~<u,-

where the model matrix X and the thresholds uy,...,u, are given. Typically, u; = 0,i =
1,...,n. Suppose we wish to estimate @ := (8,0°) via the Expectation-Maximization
method, similar to the censored data Example 4.2. Let y = [y,...,y,]" be the vector
of observed data.

TosIT
REGRESSION

= 130



210

Exercises

(a) Show that the likelihood of y is:

8010) = [ | et - x7B)x [ | @i - x7B)/o0),

iyi>u; ityi=u;

where @ is the cdf of the N(0, 1) distribution and ¢, the pdf of the N(0, o%) distribu-
tion.

(b) Let y and y be vectors that collect all y; > u; and y; = u;, respectively. Denote the

corresponding matrix of predictors by X and X, respectively. For each observation
v; = u; introduce a latent variable z; and collect these into a vector z. For the same
indices 7 collect the corresponding u; into a vector ¢. Show that the complete-data
likelihood is given by

< ¢l

5 _ YRI2 -X 2
r.216) - F-XAE an)]l{z

Qra2)2 eXp( 202 202
(c) For the E-step, show that, for a fixed 6,

2(z1y.0) = | [ e@1y.0),

1

where each g(z;|y, 0) is the pdf of the N((XB);, %) distribution, truncated to the in-
terval (—oo, ¢;].

(d) For the M-step, compute the expectation of the complete log-likelihood

Iy - XBIP EIZ - XBIP
202 202

—g Ino? — gln(27r) _

Then, derive the formulas for 8 and o? that maximize the expectation of the complete
log-likelihood.

9. Dowload data set WomenWage . csv from the book’s website. This data set is a tidied-up
version of the women’s wages data set from [91]. The first column of the data (hours) is
the response variable Y. It shows the hours spent in the labor force by married women in
the 1970s. We want to understand what factors determine the participation rate of women
in the labor force. The predictor variables are:

Table 5.7: Features for the women’s wage data set.
Feature Description
kidslt6  Number of children younger than 6 years.
kidsge6  Number of children older than 6 years.

age Age of the married woman.
educ Number of years of formal education.
exper Number of years of “work experience”.

nwifeinc Non-wife income, that is, the income of the husband.
expersq The square of exper, to capture any nonlinear relationships.


https://github.com/DSML-book/Programs/blob/master/Chapter5/WomenWage.csv

Regression 211

We observe that some of the responses are Y = 0, that is, some women did not particip-
ate in the labor force. For this reason, we model the data using the Tobit regression model,
in which the response Y is given as:

Z., itZ >0
Yi:{ 0= Z ~ N(XB, o1,).

0, ifzZ <0’
With 6 = (B, o), the likelihood of the data y = [y;, ..., y,]" is:

g()’ | 0) = Hi:y,—>0 900'2071' - x;l'ﬂ) X Hi:yi:O (D((Mi - x;l'ﬂ)/o_),

where O is the standard normal cdf. In Exercise 8, we derived the EM algorithm for max-
imizing the log-likelihood.
(a) Write down the EM algorithm in pseudo code as it applies to this Tobit regression.

(b) Implement the EM algorithm pseudo code in Python. Comment on which factor you
think is important in determining the labor participation rate of women living in the
USA in the 1970s.

10. Let P be a projection matrix. Show that the diagonal elements of P all lie in the interval
[0, 1]. In particular, for P = XX* in Theorem 5.1, the leverage value p; := P;; satisfies
0< p;<1foralli.

11. Consider the linear model ¥ = X8 + & in (5.8), with X being the n X p model matrix
and & having expectation vector 0 and covariance matrix o*I,. Suppose that B8_; is the
least-squares estimate obtained by omitting the i-th observation, Y;; that is,

B.; = argmin D - x]BY,

J#i

where x]T is the j-th row of X. Let Y. = xl.T,E_i be the corresponding fitted value at x;. Also,
define B; as the least-squares estimator of 8 based on the response data

Y(l) = [Yl’ ceey Yi—la/Y\—ia Yi+l9 ceey Yn]T'

(a) Prove thatﬁ_i = B;; that is, the linear model obtained from fitting all responses except
the i-th is the same as the one obtained from fitting the data Y.

(b) Use the previous result to verify that
Y- Y= (- Y)/(1 - Py,

where P = XX is the projection matrix onto the columns of X. Hence, deduce the
PRESS formula in Theorem 5.1. = 174

12. Take the linear model ¥ = X + g where X is an n X p model matrix, & = 0, and
Cov(e) = 0I,,. Let P = XX* be the projection matrix onto the columns of X.

(a) Using the properties of the pseudo-inverse (see Definition A.2), show that PPT = P. =" 360



212

Exercises

STUDENTIZED
RESIDUAL

COOK’S DISTANCE

(b) LetE=Y — Y be the (random) vector of residuals, where Y = PY. Show that the i-th
residual has a normal distribution with expectation 0 and variance o*(1 — P;;) (that is,
o times 1 minus the i-th leverage).

(c) Show that o> can be unbiasedly estimated via
1 e 1 —
§%:= ——||Y = Y|F = ——|IY - XB|. (5.44)
n—p n—p
[Hint: use the cyclic property of the trace as in Example 2.3.]

13. Consider a normal linear model Y = X + &, where X is an n X p model matrix and
& ~ N(0,0°L,). Exercise 12 shows that for any such model the i-th standardized residual
E;/(c V1 —P;) has a standard normal distribution. This motivates the use of the leverage
P;; to assess whether the i-th observation is an outlier depending on the size of the i-th
residual relative to V1 — P;;. A more robust approach is to include an estimate for o using
all data except the i-th observation. This gives rise to the studentized residual T;, defined
as
E;

T SLNT-P,
where §_; is an estimate of o~ obtained by fitting all the observations except the i-th and
E; =Y;—Y,; s the i-th (random) residual. Exercise 12 shows that we can take, for example,

S% = 1Y — X_B_IP, (5.45)

n—-1-p
where X_; is the model matrix X with the i-th row removed, is an unbiased estimator of
o?. We wish to compute S?; efficiently, using S2 in (5.44), as the latter will typically be
available once we have fitted the linear model. To this end, define u; as the i-th unit vector
[0,...,0,1,0,...,0]7, and let

E;
u‘

YO .=y — Yl._?_l. ;=Y - 0
( u I_p,

where we have used the fact that Y; — ?_i = E;/(1 — P;), as derived in the proof of The-
orem 5.1. Now apply Exercise 11 to prove that

§2 — (n—P)SZ—El-Z/(l -P;)

n—-p-1

14. Using the notation from Exercises 11-13, Cook’s distance for observation i is defined
as e
Y -Y |

pS*
It measures the change in the fitted values when the i-th observation is removed, relative to
the residual variance of the model (estimated via S ?).

Di =

By using similar arguments as those in Exercise 13, show that
Di=———75——.
(1-P;)*pS?
It follows that there is no need to “omit and refit” the linear model in order to compute
Cook’s distance for the i-th response.



Regression

213

15. Prove that if we add an additional feature to the general linear model, then R?, the
coeflicient of determination, is necessarily non-decreasing in value and hence cannot be
used to compare models with different numbers of predictors.

16. Let X := [X;,...,X,]" and g := [u1,...,u,]". In the fundamental Theorem C.9, we
use the fact that if X; ~ N(u;, 1), i = 1,. .., n are independent, then || X||? has (per definition)
a noncentral Xﬁ distribution. Show that || X||*> has moment generating function

etllﬂllz/(l—Zt)

— 1< 1/2,
(1 =22 /
and so the distribution of || X||* depends on g only through the norm ||u]|.

17. Carry out a logistic regression analysis on a (partial) wine data set classification prob-
lem. The data can be loaded using the following code.

from sklearn import datasets
import numpy as np
data = datasets.load_wine()

X = data.datal[:, [9,10]]
y = np.array(data.target==1,dtype=np.uint)
X = np.append(np.ones(len(X)).reshape(-1,1),X,axis=1)

The model matrix has three features, including the constant feature. Instead of using
Newton’s method (5.39) to estimate 8, implement a simple gradient descent procedure

B, =By —aVr(B,._)),

with learning rate & = 0.0001, and run it for 10° steps. Your procedure should deliver three
coeflicients; one for the intercept and the rest for the explanatory variables. Solve the same
problem using the Logit method of statsmodels.api and compare the results.

18. Consider again Example 5.10, where we train the learner via the Newton iteration

(5.39). If X7 :=[xy,...,x,] defines the matrix of predictors and g, := h(Xg,), then the
gradient (5.37) and Hessian (5.38) for Newton’s method can be written as:

1 1
Vr(B,) = ZXT(H’ -y) and H(B,) = r—lXTD,X,

where D, := diag(u, © (1 — y,)) is a diagonal matrix. Show that the Newton iteration (5.39)
can be written as the iterative reweighted least-squares method:

B = arg;nin @t—l - XB)TDt—lG;t—I - XB),

wherey,_, := XB,_, + D!, (y — p,_,) is the so-called adjusted response. [Hint: use the fact
that (M™M)~'M" z is the minimizer of ||MB — z||*.]

= 206

ITERATIVE
REWEIGHTED
LEAST SQUARES



214

Exercises

MULTI-OUTPUT
LINEAR
REGRESSION

5 357

19. In multi-output linear regression, the response variable is a real-valued vector of di-
mension, say, m. Similar to (5.8), the model can be written in matrix notation:

.
&

Y=XB+]|:],

N

where:

e Y is an n X m matrix of n independent responses (stored as row vectors of length m);
e X is the usual n X p model matrix;
e B is an p X m matrix of model parameters;

e &,...,&, € R™are independent error terms with Ee = 0 and Ece™ = X.
We wish to learn the matrix parameters B and X from the training set {Y, X}. To this end,
consider minimizing the training loss:

Le ((Y - XB)x™' (Y - XB)T).
n

where tr(+) is the trace of a matrix.

(a) Show that the minimizer of the training loss, denoted B, satisfies the normal equa-

tions: _
X'XB=X"Y.

(b) Noting that
(Y- XB)" (Y - XB) = ) &6/,
i=1
explain why

5. (Y-XB)(Y - XB)
. n

is a method-of-moments estimator of X, just like the one given in (5.10).



CHAPTER 6

REGULARIZATION AND KERNEL
METHODS

The purpose of this chapter is to familiarize the reader with two central concepts
in modern data science and machine learning: regularization and kernel methods. Reg-
ularization provides a natural way to guard against overfitting and kernel methods of-
fer a broad generalization of linear models. Here, we discuss regularized regression
(ridge, lasso) as a bridge to the fundamentals of kernel methods. We introduce repro-
ducing kernel Hilbert spaces and show that selecting the best prediction function in
such spaces is in fact a finite-dimensional optimization problem. Applications to spline
fitting, Gaussian process regression, and kernel PCA are given.

6.1 Introduction

In this chapter we return to the supervised learning setting of Chapter 5 (regression) and ex-
pand its scope. Given training data 7 = {(x1,y1), ..., (X, ¥,)}, we wish to find a prediction
function (the learner) g, that minimizes the (squared-error) training loss

1 n
t(9) =~ > 0= 8x))’
i=1

within a class of functions G. As noted in Chapter 2, if G is the set of all possible functions
then choosing any function g with the property that g(x;) = y; for all i will give zero training
loss, but will likely have poor generalization performance (that is, suffer from overfitting).

Recall from Theorem 2.1 that the best possible prediction function (over all g) for
the squared-error risk E(Y — g(X))? is given by g*(x) = E[Y | X = x]. The class G should
be simple enough to permit theoretical understanding and analysis but, at the same time,
rich enough to contain the optimal function g* (or a function close to g*). This ideal can
be realized by taking G to be a Hilbert space (i.e., a complete inner product space) of
functions; see Appendix A.7.

Many of the classes of functions that we have encountered so far are in fact Hilbert
spaces. In particular, the set G of linear functions on R” is a Hilbert space. To see this,

215

HILBERT SPACE

5 384



216

Regularization

=" 360

COMPLETE
VECTOR SPACE

=5 26

FEATURE MAPS

RKHS

5 235

= 269

REGULARIZATION

= 407

RIDGE
REGRESSION

identify with each element 8 € R? the linear function gz : x > x '8 and define the inner
product on G as (gg, &) = B7y. In this way, G behaves in exactly the same way as (is
isomorphic to) the space R” equipped with the Euclidean inner product (dot product). The
latter is a Hilbert space, because it is complete with respect to the Euclidean norm. See
Exercise 12 for a further discussion.

Let us now turn to our “running” polynomial regression Example 2.1, where the feature
vector x = [1,u,u?,...,uP~']T =: ¢(u) is itself a vector-valued function of another feature
u. Then, the space of functions &g : u — ¢(u)" B is a Hilbert space, through the identifica-
tion hg = B. In fact, this is true for any feature mapping ¢ : u = [¢1(u), ..., ¢, (u)]".

This can be further generalized by considering feature maps u — «,, where each «,
is a real-valued function v — «,(v) on the feature space. As we shall soon see (in Sec-
tion 6.3), functions of the form u — .2, Bik,.(«) live in a Hilbert space of functions called
a reproducing kernel Hilbert space (RKHS). In Section 6.3 we introduce the notion of a
RKHS formally, give specific examples, including the linear and Gaussian kernels, and de-
rive various useful properties, the most important of which is the representer Theorem 6.6.
Applications of such spaces include the smoothing splines (Section 6.6), Gaussian pro-
cess regression (Section 6.7), kernel PCA (Section 6.8), and support vector machines for
classification (Section 7.7).

The RKHS formalism also makes it easier to treat the important topic of regularization.
The aim of regularization is to improve the predictive performance of the best learner in
some class of functions G by adding a penalty term to the training loss that penalizes
learners that tend to overfit the data. In the next section we introduce the main ideas behind
regularization, which then segues into a discussion of kernel methods in the subsequent
sections.

6.2 Regularization

Let G be the Hilbert space of functions over which we search for the minimizer, g, of the
training loss ¢;(g). Often, the Hilbert space G is rich enough so that we can find a learner
g, within G such that the training loss is zero or close to zero. Consequently, if the space of
functions G is sufficiently rich, we run the risk of overfitting. One way to avoid overfitting
is to restrict attention to a subset of the space G by introducing a non-negative functional
J : G — R, which penalizes complex models (functions). In particular, we want to find
functions g € G such that J(g) < c for some “regularization” constant ¢ > 0. Thus we can
formulate the quintessential supervised learning problem as:

min {f-(g) : g€G,J(g) <c}, (6.1)

the solution (argmin) of which is our learner. When this optimization problem is convex, it
can be solved by first obtaining the Lagrangian dual function

L) = ré{lelgn {t(g) + A(J(g) — o)},

and then maximizing £*(4) with respect to 4 > 0; see Section B.2.3.

In order to introduce the overall ideas of kernel methods and regularization, we will
proceed by exploring (6.1) in the special case of ridge regression, with the following run-
ning example.



Regularization and Kernel Methods 217
B Example 6.1 (Ridge Regression) Ridge regression is simply linear regression with a
squared-norm penalty functional (also called a regularization function, or regularizer). REGULARIZER

Suppose we have a training set 7 = {(x;,y;),i = 1,...,n}, with each x; € R” and we use a
squared-norm penalty with regularization parameter y > 0. Then, the problem is to solve

AN 2 2
min — i —g(x)” + , 6.2
mir nZ](y g+ lgl (6.2)
where G is the Hilbert space of linear functions on R”. As explained in Section 6.1, we
can identify each g € G with a vector 8 € R” and, consequently, ||gl|> = (8, 8) = ||BII>. The
above functional optimization problem is thus equivalent to the parametric optimization
problem

1
min —
BeR? n

D 0i-xIB) +yIBIP, (6.3)
i=1

which, in the notation of Chapter 5, further simplifies to
. 1 _ 2 2
min — ||y = XB|I” + ¥ [|BII°. (6.4)
BeRP n

In other words, the solution to (6.2) is of the form x — x'fB", where 8 solves (6.3) (or
equivalently (6.4)). Observe that as y — oo, the regularization term becomes dominant and
consequently the optimal g becomes identically zero.

The optimization problem in (6.4) is convex, and by multiplying by the constant n/2
and setting the gradient equal to zero, we obtain

X'XB-y)+nyB=0. (6.5)

If y = 0 these are simply the normal equations, albeit written in a slightly different form.
If the matrix XX + nyl, is invertible (which is the case for any y > 0; see Exercise 13),
then the solution to these modified normal equations is

B=X"X+nyL) ' XTy.
|

When using regularization with respect to some Hilbert space G, it is sometimes useful
to decompose G into two orthogonal subspaces, H and C say, such that every g € G can
be uniquely written as g = h + ¢, with h € H, ¢ € C, and (h,c) = 0. Such a G is said to be
the direct sum of C and H, and we write G = H & C. Decompositions of this form become
useful when functions in H are penalized but functions in C are not. We illustrate this
decomposition with the ridge regression example where one of the features is a constant
term, which we do not wish to penalize.

B Example 6.2 (Ridge Regression (cont.)) Suppose one of the features in Example 6.1
is the constant 1, which we do not wish to penalize. The reason for this is to ensure that
when y — oo, the optimal g becomes the “constant” model, g(x) = [, rather than the
“zero” model, g(x) = 0. Let us alter the notation slightly by considering the feature vectors
to be of the form x = [1,x"]", where x = [xi, ..., x,]". We thus have p + 1 features, rather

REGULARIZATION
PARAMETER

= 28

DIRECT SUM



218

Regularization

(GRAM MATRIX

than p. Let G be the space of linear functions of x. Each linear function g of X can be
written as g : X — Sy + x' B, which is the sum of the constant function ¢ : X — By and
h : x — x"B. Moreover, the two functions are orthogonal with respect to the inner product
on G :{c,hy = [By,0"][0,87]" = 0, where 0 is a column vector of zeros.

As subspaces of G, both C and H are again Hilbert spaces, and their inner products and
norms follow directly from the inner product on G. For example, each function z : x —
x" B in H has norm ||All4; = ||Bll, and the constant function ¢ : X + Sy in C has norm |By|.

The modification of the regularized optimization problem (6.2) where the constant term
is not penalized can now be written as

AN 2 2
-3 - 8@ : 6.6
Join iZI(y 8(x)” + vy liglly (6.6)
which further simplifies to
!
min — ||y - Bol — XBI” + v IBI, (6.7)
BoB N

where 1 is the nX 1 vector of 1s. Observe that, in this case, as y — oo the optimal g tends to
the sample mean y of the {y;}; that is, we obtain the “default” regression model, without ex-
planatory variables. Again, this is a convex optimization problem, and the solution follows
from

X" (Bl +XB—y)+nyB =0, (6.8)
with
nBo =1y - XpB). (6.9)

This results in solving for # from
XX - X1 X +nyL)B = (X" —n'X"11")y, (6.10)

and determining B, from (6.9).

As a precursor to the kernel methods in the following sections, let us assume thatn > p
and that X has full (column) rank p. Then any vector B € R” can be written as a linear
combination of the feature vectors {x;}; that is, as linear combinations of the columns of
the matrix X . In particular, let 8 = X @, where @ = [a,...,a,]" € R". In this case (6.10)
reduces to

XXT - "M1™XXT 4+ nyL)a = dA, - n'117)y.

Assuming invertibility of (XX —n~'11"XXT + ny1,), we have the solution
a=XX" - " 11"XXT + nyL) A, - 7 117y,

which depends on the training feature vectors {x;} only through the n X n matrix of inner
products: XX = [(x;, x;)]. This matrix is called the Gram matrix of the {x;}. From (6.9),

the solution for the constant term is BB =n""17(y — XX"@). It follows that the learner is a
linear combination of inner products {{x;, x)} plus a constant:

g:(®) = o+ xTXT@ = By + ) @ (x;, ),
i=1



Regularization and Kernel Methods

219

where the coeflicients EO and @; only depend on the inner products {(x;, x;)}. We will see
shortly that the representer Theorem 6.6 generalizes this result to a broad class of regular-
ized optimization problems. [ ]

We illustrate in Figure 6.1 how the solutions of the ridge regression problems appearing
in Examples 6.1 and 6.2 are qualitatively affected by the regularization parameter vy for a
simple linear regression model. The data was generated from the model y; = —=1.5+0.5x; +
g, 1 = 1,...,100, where each x; is drawn independently and uniformly from the interval
[0, 10] and each g; is drawn independently from the standard normal distribution.

Figure 6.1: Ridge regression solutions for a simple linear regression problem. Each panel
shows contours of the loss function (log scale) and the effect of the regularization parameter
v € {0.1, 1, 10}, appearing in (6.4) and (6.7). Top row: both terms are penalized. Bottom
row: only the non-constant term is penalized. Penalized (plus) and unpenalized (diamond)
solutions are shown in each case.

The contours are those of the squared-error loss (actually the logarithm thereof), which
is minimized with respect to the model parameters 5y and ;. The diamonds all repres-
ent the same minimizer of this loss. The plusses show each minimizer [5;,5]]" of the
regularized minimization problems (6.4) and (6.7) for three choices of the regularization
parameter y. For the top three panels the regularization involves both S, and S3;, through
the squared norm S + 37. The circles show the points that have the same squared norm as

= 231



220

Regularization

= 408

LASSO

= 416

the optimal solution. For the bottom three panels only B, is regularized; there, horizontal
lines indicate vectors [Sy,81]" for which || = |B]].

The problem of ridge regression discussed in Example 6.2 boils down to solving a
problem of the form in (6.7), involving a squared 2-norm penalty ||8||*>. A natural ques-
tion to ask is whether we can replace the squared 2-norm penalty by a different penalty
term. Replacing it with a 1-norm gives the lasso (least absolute shrinkage and selection
operator). The lasso equivalent of the ridge regression problem (6.7) is thus:

minllly—ﬁol—XﬁI|2+7||BII1, (6.11)
BoB N
where [|Bll; = X7, 1Bil.
This is again a convex optimization problem. Unlike ridge regression, the lasso gener-
ally does not have an explicit solution, and so numerical methods must be used to solve it.
Note that the problem (6.11) is of the form

min  f(x) + g(2)
*2 (6.12)
subjectto Ax + Bz =c,

with x := [Bo, 81", z:= 8, A := [0,,1,], B:=-I,, and ¢ := 0, (vector of zeros), and
convex functions f(x) := %ll y —[1,,X] x| and g(z) := yllzll;. There exist efficient al-
gorithms for solving such problems, including the alternating direction method of mul-
tipliers (ADMM) [17]. We refer to Example B.11 for details on this algorithm.

We repeat the examples from Figure 6.1, but now using lasso regression and taking
the square roots of the previous regularization parameters. The results are displayed in
Figure 6.2.

v =+0.1 y=1 v =+/10
2
\
\
N;:
-2
2

W
/'
/
.' /

e r—

——
-1
-2
-2 0 2 -2 0 2 -2 0 2
Bo Bo Bo

Figure 6.2: Lasso regression solutions. Compare with Figure 6.1.



Regularization and Kernel Methods

221

One advantage of using the lasso regularization is that the resulting optimal parameter
vector often has several components that are exactly 0. For example, in the top middle
and right panels of Figure 6.2, the optimal solution lies exactly at a corner point of the
square {[Bo, 811" : |Bol + |81l = |8yl + |B;1}; in this case S = 0. For statistical models with
many parameters, the lasso can provide a methodology for model selection. Namely, as the
regularization parameter increases (or, equivalently, as the L; norm of the optimal solution
decreases), the solution vector will have fewer and fewer non-zero parameters. By plotting
the values of the parameters for each y or L; one obtains the so-called regularization paths
(also called homotopy paths or coefficient profiles) for the variables. Inspection of such
paths may help assess which of the model parameters are relevant to explain the variability
in the observed responses {y;}.

B Example 6.3 (Regularization Paths) Figure 6.3 shows the regularization paths for p =
60 coeflicients from a multiple linear regression model

60
Y, = Zﬁjxl'j+8i, i=1,...,150,
j=1

where 8; = 1for j=1,...,10and B; = O for j = 11,...,60. The error terms {g;} are inde-
pendent and standard normal. The explanatory variables {x;;} were independently generated
from a standard normal distribution. As it is clear from the figure, the estimates of the 10
non-zero coeflicients are first selected, as the L; norm of the solutions increases. By the
time the L; norm reaches around 4, all 10 variables for which 5; = 1 have been correctly
identified and the remaining 50 parameters are estimated as exactly 0. Only after the L,
norm reaches around 8, will these “spurious” parameters be estimated to be non-zero. For
this example, the regularization parameter y varied from 10~ to 10.

1.5

(™ 0.5 1

-0.5 ‘ ‘ ‘

L1 norm

Figure 6.3: Regularization paths for lasso regression solutions as a function of the L; norm
of the solutions.

REGULARIZATION
PATHS

= 169



222

Reproducing Kernel Hilbert Spaces

= 230

REPRODUCING

KERNEL HILBERT
SPACE

REPRODUCING
PROPERTY

POSITIVE
SEMIDEFINITE

=" 390

6.3 Reproducing Kernel Hilbert Spaces

In this section, we formalize the idea outlined at the end of Section 6.1 of extending finite
dimensional feature maps to those that are functions by introducing a special type of Hil-
bert space of functions known as a reproducing kernel Hilbert space (RKHS). Although
the theory extends naturally to Hilbert spaces of complex-valued functions, we restrict
attention to Hilbert spaces of real-valued functions here.

To evaluate the loss of a learner g in some class of functions G, we do not need to expli-
citly construct g — rather, it is only required that we can evaluate g at all the feature vectors
Xy,...,X, of the training set. A defining property of an RKHS is that function evaluation
at a point x can be performed by simply taking the inner product of g with some feature
function «, associated with x. We will see that this property becomes particularly useful
in light of the representer theorem (see Section 6.5), which states that the learner g itself
can be represented as a linear combination of the set of feature functions {«,,,i = 1,...,n}.
Consequently, we can evaluate a learner g at the feature vectors {x;} by taking linear com-
binations of terms of the form «(x;, x;) = (kx,, kx;)g- Collecting these inner products into
a matrix K = [k(x;,x;),i,j = 1,...,n] (the Gram matrix of the {«,}), we will see that the
feature vectors {x;} only enter the loss minimization problem through K.

Definition 6.1: Reproducing Kernel Hilbert Space

For a non-empty set X, a Hilbert space G of functions g : X — R with inner product
(*,)g 1s called a reproducing kernel Hilbert space (RKHS) with reproducing kernel
k: XXX — Rif:

1. forevery x € X, k, := k(x,+) is in G,
2. k(x,x) <ooforall x € X,

3. forevery x € Xand g € G, g(x) = (g, kx)g-

The reproducing kernel of a Hilbert space of functions, if it exists, is unique; see Exer-
cise 2. The main (third) condition in Definition 6.1 is known as the reproducing property.
This property allows us to evaluate any function g € G at a point x € X by taking the inner
product of g and «,; as such, «, is called the representer of evaluation. Further, by taking
g = Ky and applying the reproducing property, we have (ky, kx)g = k(x’, x), and so by sym-
metry of the inner product it follows that x(x, x") = x(x’, x). As a consequence, reproducing
kernels are necessarily symmetric functions. Moreover, a reproducing kernel « is a positive
semidefinite function, meaning that for every n > 1 and every choice of a4, ..., @, € R and
X, ..., X, € X, it holds that

Zn:Zn:aiK(xi,xj)aj>0. (6.13)

i=1 j=1
In other words, every Gram matrix K associated with « is a positive semidefinite matrix;
that is @"Ka > 0 for all @. The proof is addressed in Exercise 1.

The following theorem gives an alternative characterization of an RKHS. The proof
uses the Riesz representation Theorem A.17. Also note that in the theorem below we could



Regularization and Kernel Methods

223

have replaced the word “bounded” with “continuous”, as the two are equivalent for linear
functionals; see Theorem A.16.

Theorem 6.1: Continuous Evaluation Functionals Characterize a RKHS

An RKHS G on a set X is a Hilbert space in which every evaluation functional
Oy : g — g(x) is bounded. Conversely, a Hilbert space G of functions X — R for
which every evaluation functional is bounded is an RKHS.

Proof: Note that, since evaluation functionals ¢, are linear operators, showing bounded-
ness is equivalent to showing continuity. Given an RKHS with reproducing kernel «, sup-
pose that we have a sequence g, € G converging to g € G, thatis ||g, — gllg — 0. We apply
the Cauchy—Schwarz inequality (Theorem A.15) and the reproducing property of « to find
that for every x € X and any n:

10x8n — 0x8l = 184(%) — g(X)| = [{gn — & kx)gl < lIgn — &llg lIkxllg = llgn — &llg VK, Kx)g

= |Ign — &llg Vk(x, x).

Noting that Vk(x, x) < oo by definition for every x € X, and that ||g, — gllg — 0 asn — oo,
we have shown continuity of d,, that is |0,g, — 0,g| — 0 as n — oo for every x € X.
Conversely, suppose that evaluation functionals are bounded. Then from the Riesz
representation Theorem A.17, there exists some gs, € G such that 6,g = (g, gs5,)¢ for all
g € G — the representer of evaluation. If we define x(x, x") = g5 (x") for all x, x’ € X, then
Ky := Kk(x,-) = g5, 1s an element of G for every x € X and (g, kx)g = 0xg = g(x), so that the
reproducing property in Definition 6.1 is verified. O

The fact that an RKHS has continuous evaluation functionals means that if two func-
tions g, h € G are “close” with respect to || - g, then their evaluations g(x), h(x) are close
for every x € X. Formally, convergence in || - || norm implies pointwise convergence for
all x € X.

The following theorem shows that any finite function x : X X X — R can serve as a
reproducing kernel as long as it is finite, symmetric, and positive semidefinite. The cor-
responding (unique!) RKHS G is the completion of the set of all functions of the form
DL, @iky, Wwhere ; e Rforalli=1,...,n.

Theorem 6.2: Moore—Aronszajn

Given a non-empty set X and any finite symmetric positive semidefinite function
k : X X X — R, there exists an RKHS G of functions g : X — R with reproducing
kernel x. Moreover, G is unique.

Proof: (Sketch) As the proof of uniqueness is treated in Exercise 2, the objective is to
prove existence. The idea is to construct a pre-RKHS G, from the given function « that has
the essential structure and then to extend G, to an RKHS G.

In particular, define G as the set of finite linear combinations of functions «,, x € X:

Go = {g = Z @ Ky,
i=1

X1,...,%X, €KX, aieR,neN}.

EVALUATION
FUNCTIONAL

1" 389



224

Construction of Reproducing Kernels

LINEAR KERNEL

Define on G the following inner product:

n m

(fs &g, = <Zn: a’,'le.,iﬂij}> = Zaiﬂjk(xi,x;).
i=1 =1 =1

Go i=1 j=1

Then G is an inner product space. In fact, G, has the essential structure we require, namely
that (i) evaluation functionals are bounded/continuous (Exercise 4) and (ii) Cauchy se-
quences in G that converge pointwise also converge in norm (see Exercise 5).

We then enlarge G to the set G of all functions g : X — R for which there exists a
Cauchy sequence in G, converging pointwise to g and define an inner product on G as the
limit

(.86 = im (£, 200 (6.14)

where f, — f and g, — g. To show that G is an RKHS it remains to be shown that (1) this
inner product is well defined; (2) evaluation functionals remain bounded; and (3) the space
G is complete. A detailed proof is established in Exercises 6 and 7. O

6.4 Construction of Reproducing Kernels

In this section we describe various ways to construct a reproducing kernel « : X X X —
R for some feature space X. Recall that x needs to be a finite, symmetric, and positive
semidefinite function (that is, it satisfies (6.13)). In view of Theorem 6.2, specifying the
space X and a reproducing kernel x : X X X — R corresponds to uniquely specifying an
RKHS.

6.4.1 Reproducing Kernels via Feature Mapping

Perhaps the most fundamental way to construct a reproducing kernel « is via a feature
map ¢ : X — R”. We define k(x, x’") := (¢(x), d(x")), where ( , ) denotes the Euclidean
inner product. The function is clearly finite and symmetric. To verify that « is positive
semidefinite, let ® be the matrix with rows ¢(x;)",...,¢(x,)" and let @ = [ay,...,@,]" €
R”. Then,

Z Za,- K(x,-,xj) a; = Z Z a; ¢T(xl~) ¢(x]) a; = (YTq)(I)T(I = ||(I)Ta’||2 > 0.

i=1 j=1 i=1 j=1

B Example 6.4 (Linear Kernel) Taking the identity feature map ¢(x) = x on X = R”,
gives the linear kernel
k(x,x) = (x,xY=x"x.

As can be seen from the proof of Theorem 6.2, the RKHS of functions corresponding to
the linear kernel is the space of linear functions on R”. This space is isomorphic to R”
itself, as discussed in the introduction (see also Exercise 12). [ |

It is natural to wonder whether a given kernel function corresponds uniquely to a feature
map. The answer is no, as we shall see by way of example.



Regularization and Kernel Methods 225
B Example 6.5 (Feature Maps and Kernel Functions) Let X = R and consider feature
maps ¢; : X = Rand ¢, : X — R?, with ¢;(x) := x and ¢,(x) := [x, x]7/V2. Then
kg, (X, X) = {P1(x), $1(x)) = xx',
but also
K, (X, X') = {P,(x), §,(x)) = xx'.
Thus, we arrive at the same kernel function defined for the same underlying set X via two
different feature maps. u
6.4.2 Kernels from Characteristic Functions
Another way to construct reproducing kernels on X = R” makes use of the properties of
characteristic functions. In particular, we have the following result. We leave its proof as IS 441
Exercise 10.
Theorem 6.3: Reproducing Kernel from a Characteristic Function
Let X ~ u be an R”-valued random vector that is symmetric about the origin (that
is, X and —X are identically distributed), and let  be its characteristic function:
Y(t) =Eet'X = fei‘Tx u(dx) for t € R”. Then «(x, x’) := y(x — x’) is a valid repro-
ducing kernel on R”.
B Example 6.6 (Gaussian Kernel) The multivariate normal distribution with mean vec-
tor 0 and covariance matrix b* I, is clearly symmetric around the origin. Its characteristic
function is |
w(t) = exp (—Ebz ||t||2), t eRP.
Taking b> = 1/0°2, this gives the popular Gaussian kernel on R”: GAUSSIAN
KERNEL
1 _ 12
k(. x) = exp |- XI0) (6.15)
2 o7
The parameter o is sometimes called the bandwidth. Note that in the machine learning BANDWIDTH

literature, the Gaussian kernel is sometimes referred to as “the” radial basis function (rbf)
kernel.!

From the proof of Theorem 6.2, we see that the RKHS G determined by the Gaussian
kernel « is the space of pointwise limits of functions of the form

- I lx - xi||2)
g(x) = a; exp (——— .
; 2 o2

We can think of each point x; having a feature «,, that is a scaled multivariate Gaussian pdf
centered at x;. [ |

IThe term radial basis function is sometimes used more generally to mean kernels of the form «(x, x’) =
f(llx — x’||) for some function f : R — R.

RADIAL BASIS

FUNCTION (RBF)
KERNEL



226

Construction of Reproducing Kernels

= 131

5 367

UNIVERSAL
APPROXIMATION
PROPERTY

MATERN KERNEL

= 164

= 162

B Example 6.7 (Sinc Kernel) The characteristic function of a Uniform[-1, 1] random
variable (which is symmetric around 0) is /(¢) = sinc(¢) := sin(t)/t, so k(x, x") = sinc(x—x")
is a valid kernel. u

Inspired by kernel density estimation (Section 4.4), we may be tempted to use the pdf
of a random variable that is symmetric about the origin to construct a reproducing kernel.
However, doing so will not work in general, as the next example illustrates.

B Example 6.8 (Uniform pdf Does not Construct a Valid Reproducing Kernel) Take
the function y(¢) = %]l{ltl < 1}, which is the pdf of X ~ Uniform[—1, 1]. Unfortunately, the
function «(x, x") = ¥(x — x’) is not positive semidefinite, as can be seen for example by
constructing the matrix A = [«(#;,1),i,j = 1,2,3] for the points #; = 0, r, = 0.75, and
t; = 1.5 as follows:

Y(0)  Y(=0.75) Y(-1.5) 05 05 0
A =y(0.75)  ¥(0) w(—0.75)] = [0.5 0.5 0.5].
w(1.5)  ¥(0.75) Y (0) 0 05 05
The eigenvalues of A are {1/2 — V1/2,1/2,1/2 + V1/2} ~ {-0.2071,0.5, 1.2071} and so
by Theorem A.9, A is not a positive semidefinite matrix, since it has a negative eigenvalue.
Consequently, « is not a valid reproducing kernel. [ ]

One of the reasons why the Gaussian kernel (6.15) is popular is that it enjoys the uni-
versal approximation property [88]: the space of functions spanned by the Gaussian kernel
is dense in the space of continuous functions with support Z C R”. Naturally, this is a
desirable property especially if there is little prior knowledge about the properties of g*.
However, note that every function g in the RKHS G associated with a Gaussian kernel « is
infinitely differentiable. Moreover, a Gaussian RKHS does not contain non-zero constant
functions. Indeed, if A C Z is non-empty and open, then the only function of the form
g(x) = ¢ 1{x € A} contained in G is the zero function (c = 0).

Consequently, if it is known that g is differentiable only to a certain order, one may
prefer the Matérn kernel with parameters v, o > 0:

21—v y
K,(x, x') = o) (x/z_v Il — x'II/O') K, (\/an - x’||/0'), (6.16)

which gives functions that are (weakly) differentiable to order |v] (but not necessarily to
order [v]). Here, K, denotes the modified Bessel function of the second kind; see (4.49).
The particular form of the Matérn kernel appearing in (6.16) ensures that lim,_,., «,(x, x") =
k(x,x"), where « is the Gaussian kernel appearing in (6.15).

We remark that Sobolev spaces are closely related to the Matérn kernel. Up to constants
(which scale the unit ball in the space), in dimension p and for a parameter s > p/2, these
spaces can be identified with y(¢) = %lltllf‘l’/ 2K »/2-s(||£]]), which in turn can be viewed as
the characteristic function corresponding to the (radially symmetric) multivariate Student’s
t distribution with s degrees of freedom: that is, with pdf £(x) oc (1 + ||x||*)~5.



Regularization and Kernel Methods

227

6.4.3 Reproducing Kernels Using Orthonormal Features

We have seen in Sections 6.4.1 and 6.4.2 how to construct reproducing kernels from feature
maps and characteristic functions. Another way to construct kernels on a space X is to work
directly from the function class L*(X;u); that is, the set of square-integrable? functions
on X with respect to u; see also Definition A.4. For simplicity, in what follows, we will
consider u to be the Lebesgue measure, and will simply write L>(X) rather than L*(X; ).
We will also assume that X C R”.

Let {£1,&,, ...} be an orthonormal basis of L*(X) and let ¢;,cy,... be a sequence of
positive numbers. As discussed in Section 6.4.1, the kernel corresponding to a feature map
¢ X > RPisk(x,x') = ¢(x)"p(x') = le ¢i(x) ¢;(x"). Now consider a (possibly infinite)
sequence of feature functions ¢; = ¢; &;,i = 1,2,... and define

KX, X) 1= ) 40 Gix) = D ) E(X), (6.17)
i>1 i>1
where A; = cl.z,i = 1,2,.... This is well-defined as long as ;5 4; < oo, which we assume

from now on. Let H be the linear space of functions of the form f =} ;.; @&, where
Yis1 @*/4; < 0. As every function f € L*(X) can be represented as f = Y. (f, &), we
see that H is a linear subspace of L*(X). On H define the inner product

(f, 8 = Z %ﬂ

i>1

With this inner product, the squared norm of f = >, ;& is ||f ||§{ = Y1 @A < oo,
We show that H is actually an RKHS with kernel « by verifying the conditions of Defini-
tion 6.1. First,
Ke= D) AEX)E EH,
i>1
as »; 4; < oo by assumption, and so « is finite. Second, the reproducing property holds.
Namely, let f = }\;»; @; &;. Then,

(ke S = Y, EELED 5 AED 5 o0 = fi.
i1 i>1 i>1

The discussion above demonstrates that kernels can be constructed via (6.17). In fact,
(under mild conditions) any given reproducing kernel x can be written in the form (6.17),
where this series representation enjoys desirable convergence properties. This result is
known as Mercer’s theorem, and is given below. We leave the full proof including the
precise conditions to, e.g., [40], but the main idea is that a reproducing kernel « can be
thought of as a generalization of a positive semidefinite matrix K, and can also be writ-
ten in spectral form (see also Section A.6.5). In particular, by Theorem A.9, we can write
K = VDV', where V is a matrix of orthonormal eigenvectors [v,] and D the diagonal

matrix of the (positive) eigenvalues [A,]; that is,

KG, /) = ) Aeveli) ve( ).

=1

2A function f : X — R is said to be square-integrable if f F2(x) u(dx) < co, where u is a measure on X.

I 385

1= 367



228

Construction of Reproducing Kernels

In (6.18) below, x, x’ play the role of i, j, and & plays the role of v,.

Theorem 6.4: Mercer

Let «k : X X X — R be a reproducing kernel for a compact set X C R”. Then
(under mild conditions) there exists a countable sequence of non-negative numbers
{A;} decreasing to zero and functions {£;} orthonormal in L*(X) such that

k(x,x") = Z Ae&r(x) Eo(X), for all x,x" € X, (6.18)
1
where (6.18) converges absolutely and uniformly on X X X.

Further, if 4, > 0, then (4., &) is an (eigenvalue, eigenfunction) pair for the integral
operator K : L*(X) — L*(X) defined by [Kf](x) := fXK(x,y)f(y) dy for x € X.

Theorem 6.4 holds if (i) the kernel « is continuous on X X X, (ii) the function «x(x) :=
k(x, x) defined for x € X is integrable. Extensions of Theorem 6.4 to more general spaces
X and measures u hold; see, e.g., [115] or [40].

The key importance of Theorem 6.4 lies in the fact that the series representation (6.18)
converges absolutely and uniformly on X X X. The uniform convergence is a much stronger
condition than pointwise convergence, and means for instance that properties of the se-
quence of partial sums, such as continuity and integrability, are transferred to the limit.

B Example 6.9 (Mercer) Suppose X = [—1, 1] and the kernel is x(x, x") = 1 + xx” which
corresponds to the RKHS G of affine functions from X — R. To find the (eigenvalue,
eigenfunction) pairs for the integral operator appearing in Theorem 6.4, we need to find
numbers {A1,} and orthonormal functions {&£,(x)} that solve

1
f (1 +xx")&(X)dx" = A &(x), forall x e [-1,1].
-1

Consider first a constant function &;(x) = c. Then, for all x € [—1, 1], we have that 2¢ = A;c,
and the normalization condition requires that f_ 11 c? dx = 1. Together, these give A, = 2 and
¢ = +1//2. Next, consider an affine function &(x) = a + bx. Orthogonality requires that

1
f cla+bx)dx =0,

1

which implies a = 0 (since ¢ # 0). Moreover, the normalization condition then requires

1
f P’ dx =1,
-1

or, equivalently, 2b?/3 = 1, implying b = + /3/2. Finally, the integral equation reads

1
2b
f (1 +xx)bx'dx' = Lbx & Tx = bx,
-1



Regularization and Kernel Methods

229

implying that 1, = 2/3. We take the positive solutions (i.e., ¢ > 0 and b > 0), and note that

1 1 23 V3,

LEMERX)+ L EKX)EN)=2——+ -—x—X =1 + xx’ = k(x, '),
161 1 262(X) &2 vz 3vi e
and so we have found the decomposition appearing in (6.18). As an aside, observe that &;
and &, are orthonormal versions of the first two Legendre polynomials. The corresponding
feature map can be explicitly identified as ¢1(x) = VA, &(x) = 1 and ¢ (x) = VA &(x) =
X. |

6.4.4 Kernels from Kernels

The following theorem lists some useful properties for constructing reproducing kernels
from existing reproducing kernels.

Theorem 6.5: Rules for Constructing Kernels from Other Kernels

1. If k : R? X R? — R is a reproducing kernel and ¢ : X — R” is a function, then
k(¢(x), #(x")) is a reproducing kernel from X X X — R.

2. If k : X x X — Ris areproducing kernel and f : X — R, is a function, then
f(x)k(x,x")f(x") is also a reproducing kernel from X X X — R.

3. If k; and «, are reproducing kernels from X X X — R, then so is their sum «; + k.

4. If «; and k, are reproducing kernels from X X X — R, then so is their product
K1K>.

5. If «x; and «, are reproducing kernels from X X X — Rand Y XY — R re-

spectively, then k. ((x, ), (x",y")) := k1(x,x’) + k2(y, y") and kx((x,y), (x',y")) :=
k1(x, x)Kk2(y,y’) are reproducing kernels from (X X Y) X (X x V) — R.

Proof: For Rules 1, 2, and 3 it is easy to verify that the resulting function is finite, sym-
metric, and positive semidefinite, and so is a valid reproducing kernel by Theorem 6.2.
For example, for Rule 1 we have i, 3, @i k(y;,y;)a; > 0 for every choice of {a;}
and {y;}?_, € R?, since k is a reproducing kernel. In particular, it holds true for y; = ¢(x;),
i=1,...,n. Rule4is easy to show for kernels «, x, that admit a representation of the form
(6.17), since

K1(%, %) Ko (%, X') = [Z ¢;(x) ¢§”(x'>) [Z ¢ x) ¢§-2)<x'>]
i>1 21
= > 6067 x) 60 () 67 (')
i,j>1
= 33 dulx) =1 k(x, %),
i1
showing that k = k;k, also admits a representation of the form (6.17), where the new (pos-
sibly infinite) sequence of features (¢;) is identified in a one-to-one way with the sequence
(¢§1)¢5.2)). We leave the proof of rule 5 as an exercise (Exercise 8). O

15" 387



230

Representer Theorem

POLYNOMIAL
KERNEL

=217

B Example 6.10 (Polynomial Kernel) Consider x,x’ € R? with
k(x,x") = (1 + (x, X)),

where (x,x’) = x"x’. This is an example of a polynomial kernel. Combining the fact that
sums and products of kernels are again kernels (rules 3 and 4 of Theorem 6.5), we find that,
since {x, x) and the constant function 1 are kernels, so are 1 + (x, x’) and (1 + (x, x’))>. By
writing

k(x,x') = (1 + x,x} + x25)?

=1 4+ 2x1X] + 22X, + 2x10X7 X5 + (xl)c’l)2 + (xzx’z)z,

we see that x(x, x) can be written as the inner product in R® of the two feature vectors ¢(x)
and ¢(x’), where the feature map ¢ : R — R® can be explicitly identified as

¢(x) = [1, V2x1, V2x2, V2x120, 37, 221"

Thus, the RKHS determined by « can be explicitly identified with the space of functions
x — ¢(x)" B for some p € RS. u

In the above example we could explicitly identify the feature map. However, in general
a feature map need not be explicitly available. Using a particular reproducing kernel cor-
responds to using an implicit (possibly infinite dimensional!) feature map that never needs
to be explicitly computed.

6.5 Representer Theorem

Recall the setting discussed at the beginning of this chapter: we are given training data
T = {(x;,y)}., and a loss function that measures the fit to the data, and we wish to find
a function g that minimizes the training loss, with the addition of a regularization term,
as described in Section 6.2. To do this, we assume first that the class G of prediction
functions can be decomposed as the direct sum of an RKHS H, defined by a kernel function

k : X X X — R, and another linear space of real-valued functions H, on X that is,
G=HeH,,

meaning that any element ¢ € G can be written as g = h + hy, with h € H and hy € H,.
In minimizing the training loss we wish to penalize the /& term of g but not the A, term.
Specifically, the aim is to solve the functional optimization problem

1 n
i - L is i)+ 2 . 6.19
BB 0 2 L0008 + Y sl (6.19)

Here, we use a slight abuse of notation: ||g|ly means ||k||¢ if g = h + hy, as above. In this
way, we can view H as the null space of the functional g > ||g|l4. This null space may be
empty, but typically has a small dimension m; for example it could be the one-dimensional
space of constant functions, as in Example 6.2.



Regularization and Kernel Methods

231

B Example 6.11 (Null Space) Consider again the setting of Example 6.2, for which we
have feature vectors x = [1,x"]" and G consists of functions of the form g : x — By +x'S.
Each function g can be decomposed as g = h + hy, where h : X — x" B, and hy : X — f.
Given g € G, we have ||g|l# = ||BIl, and so the null space H, of the functional g — ||g|l#
(that is, the set of all functions g € G for which ||g|ly = 0) is the set of constant functions
here, which has dimension m = 1. [ ]

Regularization favors elements in H, and penalizes large elements in H. As the reg-
ularization parameter y varies between zero and infinity, solutions to (6.19) vary from
“complex” (g € H & H) to “simple” (g € H).

A key reason why RKHSs are so useful is the following. By choosing H to be an
RKHS in (6.19) this functional optimization problem effectively becomes a parametric
optimization problem. The reason is that any solution to (6.19) can be represented as a
finite-dimensional linear combination of kernel functions, evaluated at the training sample.
This is known as the kernel trick.

Theorem 6.6: Representer Theorem

The solution to the penalized optimization problem (6.19) is of the form

g(x) = D @ik(xi x) + ) 1;(x), (6.20)
i=1

J=1

where {q1, ..., q,} is a basis of H,.

Proof: Let ¥ = Span{ky,,i = 1,...,n}. Clearly, ¥ C H. Then, the Hilbert space H can
be represented as H = F @ ¥+, where ¥ is the orthogonal complement of ¥ . In other
words, 7+ is the class of functions

freH (S Pu=0, feFI={f" : {fT k) =0, i}
It follows, by the reproducing kernel property, that for all f* € F+:
)= k) =0, i=1,...,n

Now, take any g € H & H,, and write it as g = f + f* + hy, with f € F, f+ € F+, and
hy € H,. By the definition of the null space H,, we have ||g||(2H =|f + fl||(2H. Moreover, by

Pythagoras’ theorem, the latter is equal to || f ||§L[ + || flllfH. It follows that

1 v 1< )
. ; Loss(yi, g(x,)) + llglly, = - ; Loss(yi, f(xi) + ho(x:)) +y (||f||§( +If ||(2H)

1 n
> n ; Loss(yi, f(x:) + ho(x;)) +y ||f||§{_

Since we can obtain equality by taking f* = 0, this implies that the minimizer of the pen-
alized optimization problem (6.19) lies in the subspace F & H, of G = H & H,, and hence
is of the form (6.20). O

KERNEL TRICK



232

Representer Theorem

Substituting the representation (6.20) of g into (6.19) gives the finite-dimensional op-
timization problem:

ae]lg‘l,inréR’" % ZLoss(yi, (Ka + Qn),) + ya'Ka, (6.21)
where
e Kis the n X n (Gram) matrix with entries [k(x;, x;),i=1,...,n, j=1,...,n].
e Qis the n X m matrix with entries [g;(x;),i =1,...,n, j=1,...,m].

In particular, for the squared-error loss we have

1

min  — ||y - (Ka + Qmn) ||2 +vya'Ka. (6.22)
acR", neR™ n

This is a convex optimization problem, and its solution is found by differentiating (6.22)

with respect to @ and i and equating to zero, leading to the following system of (n + m)

linear equations:
KK™ +nyK KQ [|a| (KT
QK’ QTQ] [n] - [QT]y ' 23
As long as Q is of full column rank, the minimizing function is unique.

B Example 6.12 (Ridge Regression (cont.)) We return to Example 6.2 and identify that
H is the RKHS with linear kernel function k(x, x’) = x"x” and C = H is the linear space of
constant functions. In this case, H, is spanned by the function ¢; = 1. Moreover, K = XX7
andQ =1.
If we appeal to the representer theorem directly, then the problem in (6.6) becomes, as

aresult of (6.21):

minl ||y -0l -XX"a ||2 +y Xl

@m0 n
This is a convex optimization problem, and so the solution follows by taking derivatives
and setting them to zero. This gives the equations

XXT(XXT+nyL)a+n1-y)=0,

and
nny=1"(y - XX ).

Note that these are equivalent to (6.8) and (6.9) (once again assuming that n > p and X has
full rank p). Equivalently, the solution is found by solving (6.23):

XXTXXT +nyXXT XXT1||a| [XXT
17XXT n ml| | 17 Y-

This is a system of (n + 1) linear equations, and is typically of much larger dimension than
the (p + 1) linear equations given by (6.8) and (6.9). As such, one may question the prac-
ticality of reformulating the problem in this way. However, the benefit of this formulation
is that the problem can be expressed entirely through the Gram matrix K, without having
to explicitly compute the feature vectors — in turn permitting the (implicit) use of infinite
dimensional feature spaces. [ ]



Regularization and Kernel Methods

233

B Example 6.13 (Estimating the Peaks Function) Figure 6.4 shows the surface plot of
the peaks function:

1
fOr,x) = 3(1 — xp)e 0 10(% - x - xg) e — ge_(’””)z_x%. (6.24)

The goal is to learn the function y = f(x) based on a small set of training data (pairs of
(x,y) values). The red dots in the figure represent data 7 = {(x;, y,)}l \» Where y; = f(x;) and
the {x;} have been chosen in a quasi-random way, using Hammersley points (with bases 2
and 3) on the square [-3, 3]>. Quasi-random point sets have better space-filling properties
than either a regular grid of points or a set of pseudo-random points. We refer to [71] for
details. Note that there is no observation noise in this particular problem.

Figure 6.4: Peaks function sampled at 20 Hammersley points.

The purpose of this example is to illustrate how, using the small data set of size n = 20,
the entire peaks function can be approximated well using kernel methods. In particular, we
use the Gaussian kernel (6.15) on R?, and denote by H the unique RKHS corresponding
to this kernel. We omit the regularization term in (6.19), and thus our objective is to find
the solution to

min ~ Z(yl g(x)’.

geH n

By the representer theorem, the optimal function is of the form

1 il?
0= 3 AT

where @ := [, ...,@,]" is, by (6.23), the solution to the set of linear equations KK« =
Ky.

Note that we are performing regression over the class of functions H with an implicit
feature space. Due to the representer theorem, the solution to this problem coincides with
the solution to the linear regression problem for which the i-th feature (fori = 1,...,n) is
chosen to be the vector [«(x1, X;), ..., k(x,, x;))]".

QUASI-RANDOM



234

Representer Theorem

The following code performs these calculations and gives the contour plots of g and
the peaks functions, shown in Figure 6.5. We see that the two are quite close. Code for the
generation of Hammersley points is available from the book’s GitHub site as genham. py.

peakskernel .py

from genham import hammersley

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

from numpy.linalg import norm

import numpy as np
def peaks(x,y):
7z = (3:\-(1_}():\-*2 ¥ np.exp(_(x*z‘:z) - (y+1):':-.':2)
_ l@*(x/s _ X**3 _ y**s) % np.exp(_xs“rkz _ yz'r*z)
- 1/3 * np.exp(-(x+1)**2 - y**2))
return(z)

n = 20

X = -3 + 6*hammersley([2,3],n)

z = peaks(x[:,0],x[:,1])

XX, yy = np.mgrid[-3:3:150j,-3:3:1507]
zz = peaks(xx,yy)
plt.contour(xx,yy,zz,levels=50)

fig=plt.figure()

ax = fig.add_subplot(l11l,projection="'3d")

ax.plot_surface(xx,yy,zz,rstride=1,cstride=1,color="c',alpha=0.3,
linewidth=0)

ax.scatter(x[:,0],x[:,1],z,color="k',s=20)

plt.show ()

sig2 = 0.3 # kernel parameter
def k(x,u):

return(np.exp(-0.5*norm(x- u)**2/sig2))
K = np.zeros((n,n))
for i in range(n):

for j in range(n):

K[i,j] = k(x[i,:1,x[iDD

alpha = np.linalg.solve(K@K.T, K@z)

N, = xx.flatten().shape
Kx = np.zeros((n,N))
for i in range(n):
for j in range(N):
Kx[i,j] = k(x[i,:],np.array([xx.flatten()[j],yy.flatten()[]
110

g = Kx.T @ alpha
dim = np.sqrt(N).astype(int)



https://github.com/DSML-book/Programs/blob/master/Chapter6/genham.py
https://github.com/DSML-book/Programs/blob/master/Chapter6/peakskernel.py

Regularization and Kernel Methods

235

yhat = g.reshape(dim,dim)
plt.contour(xx,yy,yhat,levels=50)

Figure 6.5: Contour plots for the prediction function g (left) and the peaks function given
in (6.24) (right).

6.6 Smoothing Cubic Splines

A striking application of kernel methods is to fitting “well-behaved” functions to data.
Key examples of “well-behaved” functions are those that do not have large second-
order derivatives. Consider functions g : [0, 1] — R that are twice differentiable and define

1 ) .
llg”|]? := fo (g”(x))> dx as a measure of the size of the second derivative.

B Example 6.14 (Behavior of ||g”||*) Intuitively, the larger ||g”|* is, the more “wiggly”
the function g will be. As an explicit example, consider g(x) = sin(wx) for x € [0, 1], where
w is a free parameter. We can explicitly compute g”’(x) = —w? sin(wx), and consequently

1 4
Ig”II> = f w* sin*(wx) dx = % (1 - sincCw)).
0

As |w| — oo, the frequency of g increases and we have ||g”|[* — oo. [ |

Now, in the context of data fitting, consider the following penalized least-squares op-
timization problem on [0, 1]:

AN 2 2
_ s — D)+ "I, 6.25
r;ngnnz;(y g0 +1lg” (6.25)
where we will specify G in what follows. In order to apply the kernel machinery, we want
to write this in the form (6.19), for some RKHS H and null space H,. Clearly, the norm on
H should be of the form ||g|l% = ||g”|| and should be well-defined (i.e., finite and ensuring
g and g’ are absolutely continuous). This suggests that we take

H ={g e L*0,1]:|lg"”|l < oo, g, g absolutely continuous, g(0) = g’(0) = 0},



236

Smoothing Cubic Splines

CUBIC SPLINE

with inner product
1
fs@)n = f 7 (x)g” (x)dx.
0

One rationale for imposing the boundary conditions g(0) = g’(0) = 0 is as follows: when
expanding g about the point x = 0, Taylor’s theorem (with integral remainder term) states
that

g(x) = g(0) + g'(0) x + f g"(s) (x — s)ds.
0
Imposing the condition that g(0) = g’(0) = 0 for functions in H will ensure that G =
H & H, where the null space H,, contains only linear functions, as we will see.

To see that this H is in fact an RKHS, we derive its reproducing kernel. Using integra-
tion by parts (or directly from the Taylor expansion above), write

X X 1
g(x) = f g'(s)ds = f g'(s)(x—s)ds = f g"(s) (x — ), ds.
0 0 0
If « 1s a kernel, then by the reproducing property it must hold that
1
8(x) = (g, k) = f 8" () K (s)ds,
0

so that x must satisfy %K(x, s) = (x — §);, where y, := max{y, 0}. Therefore, noting that
k(x, 1) = (Kky, k)91, We have (see Exercise 15)

3

1 P(x, 5) Px(u, 5) ds = max{x, u} min{x, u}> min{x, u}
o, 1) = fo 852 o5t 2 6
The last expression is a cubic function with quadratic and cubic terms that misses the
constant and linear monomials. This is not surprising considering the Taylor’s theorem
interpretation of a function g € H. If we now take H, as the space of functions of the
following form (having zero second derivative):

ho=m +mx, xe€[0,1],

then (6.25) is exactly of the form (6.19).
As a consequence of the representer Theorem 6.6, the optimal solution to (6.25) is a
linear combination of piecewise cubic functions:

gx)=m +mx+ Z a; K(x;, x). (6.26)

i=1

Such a function is called a cubic spline with n knots (with one knot at each data point x;)
— so called, because the piecewise cubic function between knots is required to be “tied
together” at the knots. The parameters «,n are determined from (6.21) for instance by
solving (6.23) with matrices K = [«(x;, x J-)]Zj:1 and Q with i-th row of the form [1, x;] for
i=1,...,n.



Regularization and Kernel Methods

237

B Example 6.15 (Smoothing Spline) Figure 6.6 shows various cubic smoothing splines
for the data (0.05,0.4),(0.2,0.2),(0.5,0.6),(0.75,0.7), (1, 1). In the figure, we use the re-
parameterization r = 1/(1 + ny) for the smoothing parameter. Thus r € [0, 1], where r = 0
means an infinite penalty for curvature (leading to the ordinary linear regression solution)
and r = 1 does not penalize curvature at all and leads to a perfect fit via the so-called nat-
ural spline. Of course the latter will generally lead to overfitting. For r from O up to 0.8 the
solutions will be close to the simple linear regression line, while only for r very close to 1,
the shape of the curve changes significantly.

1,

0.8
0.6
N
04}
0.2F r = 0.999999
0 1 1 1 1 |
0 0.2 0.4 0.6 0.8 1
X

Figure 6.6: Various cubic smoothing splines for smoothing parameter r = 1/(1 + ny) €
{0.8,0.99,0.999,0.999999}. For r = 1, the natural spline through the data points is ob-
tained; for r = 0, the simple linear regression line is found.

The following code first computes the matrices K and Q, and then solves the linear
system (6.23). Finally, the smoothing curve is determined via (6.26), for selected points,
and then plotted. Note that the code plots only a single curve corresponding to the specified
value of p.

smoothspline.py

import matplotlib.pyplot as plt
import numpy as np

X np.array([[0.05, 0.2, 0.5, 0.75, 1.]11).T

y np.array([[0.4, 0.2, 0.6, 0.7, 1.]11).T

n = x.shape[0]

r = 0.999

ngamma = (l-r)/r

k = lambda x1, x2 : (1/2)* np.max((x1,x2)) * np.min((xl,x2)) ** 2 \

- ((1/6)* np.min((x1,x2))**3)
K = np.zeros((n,n))
for i in range(n):
for j in range(n):



https://github.com/DSML-book/Programs/blob/master/Chapter6/smoothspline.py

238

Gaussian Process Regression

GAUSSIAN
PROCESS

= 168

= 48

K[i,j] = k(x[i]l, x[iD)
Q = np.hstack((np.ones((n,1)), x))
ml np.hstack((K @ K.T + (ngamma * K), K @ Q))

m2 np.hstack((Q.T @ K.T, Q.T @ Q))
M = np.vstack((ml,m2))

C

np.vstack((K, Q.T)) @ y
ad = np.linalg.solve(M,c)

# plot the curve
XX = np.arange(0,1+0.01,0.01) .reshape(-1,1)

g = np.zeros_like(xx)

Qx = np.hstack((np.ones_like(xx), xx))
g = np.zeros_like(xx)

N = np.shape(xx) [0]

Kx = np.zeros((n,N))
for i in range(n):
for j in range(N):
Kx[i,j] = k(x[i]l, xx[ji])

g = g + np.hstack((Kx.T, Qx)) @ ad

plt.ylim((0,1.15))

plt.plot(xx, g, label = 'r = {}'.format(r), linewidth = 2)
plt.plot(x,y, 'b.', markersize=15)

plt.xlabel('$x$"')

plt.ylabel('$y$"')

plt.legend ()

6.7 Gaussian Process Regression

Another application of the kernel machinery is to Gaussian process regression. A Gaussian
process (GP) on a space X is a stochastic process {Z,,x € X} where, for any choice of
indices xi,...,Xx,, the vector [Z,,...Z, ]’ has a multivariate Gaussian distribution. As
such, the distribution of a GP is completely specified by its mean and covariance functions
pu:X—->Randk: X XX — R, respectively. The covariance function is a finite positive
semidefinite function, and hence, in view of Theorem 6.2, can be viewed as a reproducing
kernel on X.

As for ordinary regression, the objective of GP regression is to learn a regression func-
tion g that predicts a response y = g(x) for each feature vector x. This is done in a Bayesian
fashion, by establishing (1) a prior pdf for g and (2) the likelihood of the data, for a given
g. From these two we then derive, via Bayes’ formula, the posterior distribution of g given
the data. We refer to Section 2.9 for the general Bayesian framework.

A simple Bayesian model for GP regression is as follows. First, the prior distribution of



Regularization and Kernel Methods

239

g is taken to be the distribution of a GP with some known mean function u and covariance
function (that is, kernel) k. Most often u is taken to be a constant, and for simplicity of
exposition, we take it to be 0. The Gaussian kernel (6.15) is often used for the covariance
function. For radial basis function kernels (including the Gaussian kernel), points that are
closer will be more highly correlated or “similar” [97], independent of translations in space.

Second, similar to standard regression, we view the observed feature vectors x, ..., X,
as fixed and the responses yy, ..., Yy, as outcomes of random variables Y, ..., Y,. Specific-
ally, given g, we model the {Y;} as

Yi:g(xl-)+8,~, i=1,...,n, (627)

where {g;} i N(0, o?). To simplify the analysis, let us assume that o is known, so no prior
needs to be specified for 0. Let g = [g(x)),...,g(x,)]” be the (unknown) vector of re-
gression values. Placing a GP prior on the function g is equivalent to placing a multivariate
Gaussian prior on the vector g:

g ~ N(,K), (6.28)

where the covariance matrix K of g is a Gram matrix (implicitly associated with a feature
map through the kernel «), given by:

k(x1,x1) Kk(x1,%2) ... k(x1,X,)
K- K(xz:,xl) K(xz:,xz) -' K(xz:,xn). 629)

K(xnaxl) K(xn,xZ) K(xnaxn)

The likelihood of our data given g, denoted p(y| g), is obtained directly from the model
(6.27):
(Y1 g) ~ N(g,07L,). (6.30)

Solving this Bayesian problem involves deriving the posterior distribution of (g|Y). To
do so, we first note that since Y has covariance matrix K + ¢°I,, (which can be seen from
(6.27)), the joint distribution of Y and g is again normal, with mean 0 and covariance
matrix:

Ky,g =

K+ o1, K]

K Kl (6.31)

The posterior can then be found by conditioning on ¥ =y, via Theorem C.8, giving
(gly) ~ N(K"(K +0’L,)"'y, K- K" (K + 0”L,)'K).

This only gives information about g at the observed points xy, ..., x,. It is more interesting
to consider the posterior predictive distribution of g := g(x) for a new input x. We can find
the corresponding posterior predictive pdf p(g|y) by integrating out the joint posterior pdf
p(g, gy), which is equivalent to taking the expectation of p(g|g) when g is distributed
according to the posterior pdf p(g|y); that is,

p@ly)=fp(§lg)p(g|y)dg-

I 436



240

Gaussian Process Regression

PREDICTIVE

To do so more easily than direct evaluation via the above integral representation of p(g|y),
we can begin with the joint distribution of [y, g]", which is multivariate normal with mean
0 and covariance matrix

K = (6.32)

K + oI, K

K" k(x,x)|’
where k = [k(x, x1),...,k(x,x,)]". It now follows, again by using Theorem C.8, that (g|y)
has a normal distribution with mean and variance given respectively by

u®@) = k" (K+0o’1)y (6.33)
and
(@) = k(x, %) — k(K + o*1,) k. (6.34)

These are sometimes called the predictive mean and variance. It is important to note that
we are predicting the expected response EY = g(x) here, and not the actual response Y.

B Example 6.16 (GP Regression) Suppose the regression function is
g(x) = 2sin(2rx), x€[0,1].

We use GP regression to estimate g, using a Gaussian kernel of the form (6.15) with band-
width parameter 0.2. The explanatory variables xi, ..., x3p were drawn uniformly on the
interval [0, 1], and the responses were obtained from (6.27), with noise level o = 0.5. Fig-
ure 6.7 shows 10 samples from the prior distribution for g as well as the data points and
the true sinusoidal regression function g.

3 37
2 L
=~
1 L T~
// '
> 0f >
a4t
_2 L
3 ‘ ‘ ‘ ‘ ‘ 3 ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
X X

Figure 6.7: Left: samples drawn from the GP prior distribution. Right: the true regression
function with the data points.

Again assuming that the variance o2, is known, the predictive distribution as determ-
ined by (6.33) and (6.34) is shown in Figure 6.8 for bandwidth 0.2 (left) and 0.02 (right).
Clearly, decreasing the bandwidth leads to the covariance between points x and x” decreas-
ing at a faster rate with respect to the squared distance ||x — x’||, leading to a predictive
mean that is less smooth. [ ]



Regularization and Kernel Methods

241

—9() —9(x)
y — Predictive Mean | s . — Predictive Mean

) 0 0.2 0.4 0.6 0.8 1 ) 0 0.2 0.4 0.6 0.8 1
T x
Figure 6.8: GP regression of synthetic data set with bandwidth 0.2 (left) and 0.02 (right).
The black dots represent the data and the blue curve is the latent function g(x) = 2 sin(27x).

The red curve is the mean of the GP predictive distribution given by (6.33), and the shaded
region is the 95% confidence band, corresponding to the predictive variance given in (6.34).

In the above exposition, we have taken the mean function for the prior distribution
of g to be identically zero. If instead we have a general mean function m and write
m = [m(x;),...,m(x,)]" then the predictive variance (6.34) remains unchanged, and the
predictive mean (6.33) is modified to read

u@) =m@) + k" (K+cL) ' (y-m). (6.35)

Typically, the variance o appearing in (6.27) is not known, and the kernel « itself
depends on several parameters — for instance a Gaussian kernel (6.15) with an unknown
bandwidth parameter. In the Bayesian framework, one typically specifies a hierarchical
model by introducing a prior p(6) for the vector 8 of such hyperparameters. Now, the
GP prior (g|0) (equivalently, specifying p(g|#)) and the model for the likelihood of the
data given Y|g, 6, namely p(y | g, 0), are both dependent on . The posterior distribution of
(gly,0) is as before.

One approach to setting the hyperparameter 6 is to determine its posterior p(@|y) and
obtain a point estimate, for instance via its maximum a posteriori estimate. However, this
can be a computationally demanding exercise. What is frequently done in practice is to
consider instead the marginal likelihood p(y | @) and maximize this with respect to 6. This
procedure is called empirical Bayes.

Considering again the mean function m to be identically zero, from (6.31), we have
that (Y |€) is multivariate normal with mean 0 and covariance matrix K, = K + 0’1,
immediately giving an expression for the marginal log-likelihood:

1 1
Inp(y|6) = —g In(2) - 3 In|det(K,)| - 5y K, y. (6.36)

y

We notice that only the second and third terms in (6.36) depend on 6. Considering a partial

HYPERPARAMET-
ERS

EMPIRICAL BAYES



242

Kernel PCA

= 153

derivative of (6.36) with respect to a single element 6 of the hyperparameter vector € yields

1
) +-y'K;' [ﬁKy] Ky, (6.37)

0 1 (o8
—Inp(y|6) = tr(Ky[ K[|+ T

00 2 00
where [%Ky] is the element-wise derivative of matrix K, with respect to 6. If these partial
derivatives can be computed for each hyperparameter 6, gradient information could be used
when maximizing (6.36).

B Example 6.17 (GP Regression (cont.)) Continuing Example 6.16, we plot in Fig-
ure 6.9 the marginal log-likelihood as a function of the noise level o and bandwidth para-
meter.

10°
X
&)
—_—/::-—
10" e
102 101 100
Bandwidth

Figure 6.9: Contours of the marginal log-likelihood for the GP regression example. The
maximum is denoted by a cross.

The maximum is attained for a bandwidth parameter around 0.20 and o = 0.44, which
is very close to the left panel of Figure 6.8 for the case where o~ was assumed to be known
(and equal to 0.5). We note here that the marginal log-likelihood is extremely flat, perhaps
owing to the small number of points. [ ]

6.8 Kernel PCA

In its basic form, kernel PCA (principal component analysis) can be thought of as PCA in
feature space. The main motivation for PCA introduced in Section 4.8 was as a dimension-
ality reduction technique. There, the analysis rested on an SVD of the matrix X = %XTX,
where the data in X was first centered via x; ; = x; ; — x; where x; = | X
What we shall do is to first re-cast the problem in terms of the Gram matrix K = XX =
[(x;, x ;)] (note the different order of X and X ), and subsequently replace the inner product
(x,x") with «(x, x") for a general reproducing kernel x. To make the link, let us start with
an SVD of XT:
X" =UDV". (6.38)



Regularization and Kernel Methods

243

The dimensions of X, U, D, and V are d X n, d X d, d X n, and n X n, respectively. Then an
SVD of XX is
X'™X = (UDV)(UDV")" =UMDD"HU"

and an SVD of K is
K=UDV)(UDV") =V(D'D)V'.

Let A; > --- > A, > 0 denote the non-zero eigenvalues of X" X (or, equivalently, of K) and
denote the corresponding r X r diagonal matrix by A. Without loss of generality we can
assume that the eigenvector of XX corresponding to A; is the k-th column of U and that
the k-th column of V is an eigenvector of K. Similar to Section 4.8, let U; and V; contain
the first £ columns of U and V, respectively, and let A, be the corresponding kxk submatrix
of A,k=1,...,r

By the SVD (6.38), we have X'V, = UDV'V, = UkA}(/ 2 Next, consider the projection
of a point x onto the k-dimensional linear space spanned by the columns of U; — the first
k principal components. We saw in Section 4.8 that this projection simply is the linear
mapping x — U] x. Using the fact that U, = X"V, A™"/2, we find that x is projected to a
point z given by

2= APVIXx = APV kg,

where we have (suggestively) defined k, := [{x{,x),...,{(x,,x)]". The important point
is that z is completely determined by the vector of inner products «, and the k principal
eigenvalues and (right) eigenvectors of the Gram matrix K. Note that each component z,,
of z is of the form

= ) apik(xx), m=1,...k (6.39)
i=1

The preceding discussion assumed centering of the columns of X. Consider now an
uncentered data matrix X. Then the centered data can be written as X = X — %EnX, where
E, is the n X n matrix of ones. Consequently,

1

n

T oSST ~~T == l  ——7
XX'=XX --EXX - EXX E, + EEHXX E,,
or, more compactly, XX™ = H XXTH, where H =1, — %lnlz, I, is the n X n identity matrix,
and 1, is the n X 1 vector of ones.

To generalize to the kernel setting, we replace XX by K = [«(x;,x)),i,j = 1,...,n]
and set k, = [k(x1,X),...,k(x,,x)]", so that Ay is the diagonal matrix of the k largest eigen-
values of HKH and V; is the corresponding matrix of eigenvectors. Note that the “usual”
PCA is recovered when we use the linear kernel x(x, y) = x"y. However, instead of having
only kernels that are explicitly inner products of feature vectors, we are now permitted to
implicitly use infinite feature maps (functions) by using kernels.

B Example 6.18 (Kernel PCA) We simulated 200 points, X1, ..., X0, from the uniform
distribution on the set By U (B4 N BS), where B, := {(x,y) € R* : x* + y* < r?} (disk with
radius r). We apply kernel PCA with Gaussian kernel x(x,x’) = exp (—le - x’||2) and
compute the functions z,,(x),m = 1,...,9 in (6.39). Their density plots are shown in Fig-
ure 6.10. The data points are superimposed in each plot. From this we see that the principal
components identify the radial structure present in the data. Finally, Figure 6.11 shows

1= 153



244 Kernel PCA

the projections [z;(x;), z2(x;)]",i = 1,...,200 of the original data points onto the first two
principal components. We see that the projected points can be separated by a straight line,

= 272 whereas this is not possible for the original data; see also, Example 7.6 for a related prob-
lem.

Figure 6.10: First nine eigenfunctions using a Gaussian kernel for the two-dimensional
data set formed by the red and cyan points.



Regularization and Kernel Methods

245

0.6
04r

021

-0.2 1
-04r

0.6 /

_08 Il Il Il Il Il
-0.4 -0.2 0 0.2 0.4 0.6 0.8
Projection onto First Component

Projection onto Second Component

Figure 6.11: Projection of the data onto the first two principal components. Observe that
already the projections of the inner and outer points are well separated.

Further Reading

For a good overview of the ridge regression and the lasso, we refer the reader to [36, 56].
For overviews of the theory of RKHS we refer to [3, 115, 126], and for in-depth background
on splines and their connection to RKHSs we refer to [123]. For further details on GP
regression we refer to [97] and for kernel PCA in particular we refer to [12, 92]. Finally,
many facts about kernels and their corresponding RKHSs can be found in [115].

Exercises

1. Let G be an RKHS with reproducing kernel k. Show that « is a positive semidefinite
function.

2. Show that a reproducing kernel, if it exists, is unique.

3. Let G be a Hilbert space of functions g : X — R. Recall that the evaluation func-
tional is the map 6, : g — g(x) for a given x € X. Show that evaluation functionals
are linear operators.

4. Let Gy be the pre-RKHS G, constructed in the proof of Theorem 6.2. Thus, g € G,
is of the form g = 3, @; k,, and

(8:Kedgo = ) (K Kedgy = D k(X3 X) = g(x).
i=1 i=1



246

Exercises

=" 389

10.

11.

Therefore, we may write the evaluation functional of g € Gy at x as 6,8 := (g, kx)g,-
Show that d, is bounded on G, for every x; that is, |0, f| < ¥ | fllg,, for some y < oo.

. Continuing Exercise 4, let (f,) be a Cauchy sequence in G, such that |f,,(x)| — O for

all x. Show that ||f,llg, — O.

Continuing Exercises 5 and 4, to show that the inner product (6.14) is well defined,
a number of facts have to be checked.

(a) Verify that the limit converges.

(b) Verify that the limit is independent of the Cauchy sequences used.

(c) Verify that the properties of an inner product are satisfied. The only non-trivial
property to verify is that (f, f)g = 0 if and only if f = 0.

. Exercises 4-6 show that G defined in the proof of Theorem 6.2 is an inner product

space. It remains to prove that G is an RKHS. This requires us to prove that the inner
product space G is complete (and thus Hilbert), and that its evaluation functionals
are bounded and hence continuous (see Theorem A.16). This is done in a number of
steps.

(a) Show that G, is dense in G in the sense that every f € G is a limit point (with
respect to the norm on &) of a Cauchy sequence (f,,) in Go.

(b) Show that every evaluation functional J, on G is continuous at the 0 function.
That is,
Ve>0:20>0:VfeG:llfllg<d=Ifx)<e. (6.40)

Continuity of d, at all functions g € G then follows automatically from linearity.

(c) Show that G is complete; that is, every Cauchy sequence (f,) € G converges in
the norm || - ||g.

. If x; and k, are kernels on X and Y, then «,((x,y), (x,y") = k1 (x,x") + k2(y,y’)

and k«((x,y), (x',y") := k1(x, X" )k,(y,y’) are kernels on the Cartesian product X X V.
Prove this.

. An RKHS enjoys the following desirable smoothness property: if (g,) is a sequence

belonging to RKHS G on X, and ||g, — gllg — O, then g(x) = lim, g,(x) forall x € X.
Prove this, using Cauchy—Schwarz.

Let X be an R%-valued random variable that is symmetric about the origin (that is,
X and (—X) are identically distributed). Denote by u is its distribution and ¢(¢) =
Eelt'X = f e!"* u(dx) for t € RY is its characteristic function. Verify that x(x, x') =
Y(x — x’) is a real-valued positive semidefinite function.

Suppose an RKHS G of functions from X — R (with kernel «) is invariant under a
group 7 of transformations 7 : X — X thatis, forall f,g € Gand T € 7, we have
W) foT eGand (i) (foT,goT)g =(f,8g Show that x(Tx,Tx") = x(x,x") for
allx,x’ e Xand T € T.



Regularization and Kernel Methods

247

12.

13.
14.

15.

16.

Given two Hilbert spaces H and G, we call a mapping A : ‘H — G a Hilbert space
isomorphism if it is

(i) alinear map; thatis, A(af + bg) = aA(f)+bA(g) for any f,g € H and a,b € R.
(i1) a surjective map; and
(iii) an isometry; that is, for all f, g € H, it holds that (f, g)y = (Af, Ag)g-.

Let H = R? (equipped with the usual Euclidean inner product) and construct its
(continuous) dual space G, consisting of all continuous linear functions from R” to
R, as follows: (a) For each B € R”, define gg : R” — R via gg(x) = (B,x) = B x, for
all x € R”. (b) Equip G with the inner product (gg, g,)g := B 7.

Show that A : H — G defined by A(B) = gg for B € R? is a Hilbert space isomorph-
ism.

Let X be an n X p model matrix. Show that X"X + nyI, for y > 0 is invertible.

As Example 6.8 clearly illustrates, the pdf of a random variable that is symmetric
about the origin is not in general a valid reproducing kernel. Take two such iid ran-
dom variables X and X’ with common pdf f, and define Z = X + X’. Denote by ¢,
and f7 the characteristic function and pdf of Z, respectively.

Show that if ¢, is in L'(R), f is a positive semidefinite function. Use this to show
that «(x, x') = fz(x—x") = 1{|x —x'| < 2}(1 —|x—x’|/2) is a valid reproducing kernel.

max{x,u} min{x,u}? _

For the smoothing cubic spline of Section 6.6, show that x(x, u) = 5

min{x,u}?

6
Let X be an n X p model matrix and let # € R” be the unit-length vector with k-th
entry equal to one (u; = |lu|| = 1). Suppose that the k-th column of X is v and that it
is replaced with a new predictor w, so that we obtain the new model matrix:

X=X+w-vu.

(a) Denoting
L2
0 =X"(w—-v)+ uu,

show that

w+6)u+06)" _(u -6 - o)’

X' X=X"X+us" +6u” =X"X + > >

In other words, XX differs from XTX by a symmetric matrix of rank two.
(b) Suppose that B := (XX + nyI,)™" is already computed. Explain how the
Sherman—Morrison formulas in Theorem A.10 can be applied twice to com-

pute the inverse and log-determinant of the matrix X' X +n ¥I, in O((n + p)p)
computing time, rather than the usual O((n + p?)p) computing time.’

3This Sherman-Morrison updating is not always numerically stable. A more numerically stable method
will perform two consecutive rank-one updates of the Cholesky decomposition of XX + nyI,,.

HILBERT SPACE
ISOMORPHISM

=5 371



248

Exercises

=217

I 56

=5 371

(c) Write a Python program for updating a matrix B = (X"X + nyI,)”" when we
change the k-th column of X, as shown in the following pseudo-code.

Algorithm 6.8.1: Updating via Sherman—Morrison Formula

input: Matrices X and B, index k, and replacement w for the k-th column of X.
output: Updated matrices X and B.

1 Setv € R” to be the k-th column of X.

2 Set u € R” to be the unit-length vector such that u; = ||u|| = 1.

Bus"B
sBep- 0B
1+6 Bu

T
{B_p_ bouB
1+u"Bb

(9]

Update the k-th column of X with w.
¢ return X, B

17. Use Algorithm 6.8.1 from Exercise 16 to write Python code that computes the ridge

regression coefficient B8 in (6.5) and use it to replicate the results on Figure 6.1. The
following pseudo-code (with running cost of O((n+ p)p*)) may help with the writing
of the Python code.

Algorithm 6.8.2: Ridge Regression Coefficients via Sherman—Morrison Formula

input: Training set {X, y} and regularization parameter y > 0.
output: Solution 8 = (nyI, + X" X)"'XTy.
1 Set A to be an n X p matrix of zeros and B « (ny1,)™".
2forj=1,...,pdo
3 Set w to be the j-th column of X.
4 L Update {A, B} via Algorithm 6.8.1 with inputs {A, B, j, w}.

s B — B(XTy)
6 returnﬁ

18. Consider Example 2.10 with D = diag(4,, ..., 4,) for some nonnegative vector A €

R”, so that twice the negative logarithm of the model evidence can be written as
—21Ing(y) =1(A) :=nln[y I - XEX")y] + In|D| - In|X| + c,
where c is a constant that depends only on 7.
(a) Use the Woodbury identities (A.15) and (A.16) to show that

I-XZXT =T+ XDX")!
InD|-In[Z| = InI + XDX"|.

Deduce that /(A1) = nln[yTCy] — In|C| + ¢, where C := (I + XDXT)~!,



Regularization and Kernel Methods

249

(b) Let [vy,...,v,] := X denote the p columns/predictors of X. Show that
P
C_1 =1+ Z /lkvkv,j.
k=1
Explain why setting A, = 0 has the effect of excluding the k-th predictor from

the regression model. How can this observation be used for model selection?

(c) Prove the following formulas for the gradient and Hessian elements of /(A):

O _yrey, - (v; Cy)?
oA y'Cy 6.41)
8l V] Cy)vICy)T '

= (-1 Cv;))* —n|v]Cy; -

0/1, (9/1] chy

(d) One method to determine which predictors in X are important is to compute

A" := argmin /()
120
using, for example, the interior-point minimization Algorithm B.4.1 with gradi-

ent and Hessian computed from (6.41). Write Python code to compute A" and
use it to select the best polynomial model in Example 2.10.

19. (Exercise 18 continued.) Consider again Example 2.10 with D = diag(4,, ..., 4,) for
some nonnegative model-selection parameter A € R”. A Bayesian choice for 4 is the
maximizer of the marginal likelihood g(y | A); that is,

A" = argmax ffg(ﬂ, o2, y| D) dBdo?,
10

where

~XBIP+B8'Dp 1
_y —XBlI"+B ﬂ——lnIDl—n+p
2072 2

Ing(B,0%,y|A) = In(2no?) — In .

To maximize g(y | A), one can use the EM algorithm with B and o acting as latent
variables in the complete-data log-likelihood In g(B, 0%, y | ). Define
=D +XX)"
B =Xy (6.42)
7 = (llyl* - y"XB) /n.

(a) Show that the conditional density of the latent variables 8 and o is such that

(o-‘2|/l,y) ~ Gamma (g g&z)

(ﬂ|/l, 0'2,y) ~ N(B, 0'2):).

= 419

I 128



250 Exercises
1= 430 (b) Use Theorem C.2 to show that the expected complete-data log-likelihood is
B'D'B  t(D'X)+In|D| N
p— — e C .
252 2 :
where ¢, is a constant that does not depend on A.
=" 359 (c) Use Theorem A.2 to simplify the expected complete-data log-likelihood and to
show that it is maximized at A; = X; + (8;/0)* fori = 1,..., p. Hence, deduce
the following E and M steps in the EM algorithm:
E-step. Given A, update (X, 8,52) via the formulas (6.42).
M-step. Given (X,8,72), update A via A; = Z; + (B;/)% i=1,...,p.

(d) Write Python code to compute A* via the EM algorithm, and use it to select
the best polynomial model in Example 2.10. A possible stopping criterion is to
terminate the EM iterations when

Ing(y[ A1) —Ingy|A) <&
for some small &€ > 0, where the marginal log-likelihood is
n SO | 1
Ing(y|A) = —5 In(nro~) — > In|D| + > In|X| + InT'(n/2).
20. In this exercise we explore how the early stopping of the gradient descent iterations
=412 (see Example B.10),

EARLY STOPPING

I 366

xt+1:xt_alvf(xt)9 t:(),l""’

is (approximately) equivalent to the global minimization of f(x)+ %)/Hxll2 for certain
values of the ridge regularization parameter y > 0 (see Example 6.1). We illustrate
the early stopping idea on the quadratic function f(x) = %(x — ) "H(x — u), where
H € R™" is a symmetric positive-definite (Hessian) matrix with eigenvalues {A;}]_,.

(a) Verify that for a symmetric matrix A € R” such that I - A is invertible, we have
I+A+ - +A7 ' =I-ANYT-A)".

(b) Let H = QAQT be the diagonalization of H as per Theorem A.8. If x, = 0,
show that the formula for x; is

x =p—-QI-aN)Q p.

Hence, deduce that a necessary condition for x, to converge is @ < 2/ max; A;.

(¢c) Show that the minimizer of f(x) + %yllxll2 can be written as
X' =p-QU+y'A)'Q

(d) For a fixed value of ¢, let the learning rate a | 0. Using part (b) and (c), show
that if y ~ 1/(t@) as @ | 0O, then x; ~ x*. In other words, x, is approximately
equal to x* for small @, provided that y is inversely proportional to ¢ a.



CHAPTER 7

CLASSIFICATION

The purpose of this chapter is to explain the mathematical ideas behind well-known
classification techniques such as the naive Bayes method, linear and quadratic discrim-
inant analysis, logistic/softmax classification, the K-nearest neighbors method, and
support vector machines.

7.1 Introduction

Classification methods are supervised learning methods in which a categorical response
variable Y takes one of ¢ possible values (for example whether a person is sick or healthy),
which is to be predicted from a vector X of explanatory variables (for example, the blood
pressure, age, and smoking status of the person), using a prediction function g. In this
sense, g classifies the input X into one of the classes, say in the set {0, ...,c — 1}. For this
reason, we will call g a classification function or simply classifier. As with any supervised
learning technique (see Section 2.3), the goal is to minimize the expected loss or risk

{(g) = ELoss(Y, g(X)) (7.1)

for some loss function, Loss(y,y), that quantifies the impact of classifying a response y via
y = g(x). The natural loss function is the zero—one (also written 0—1) or indicator loss:
Loss(y,y) := 1{y # y}; that is, there is no loss for a correct classification (y = y) and a
unit loss for a misclassification (y #y). In this case the optimal classifier g* is given in the
following theorem.

Theorem 7.1: Optimal classifier

For the loss function Loss(y,y) = 1{y # ¥}, an optimal classification function is

g"(x) = argmax P[Y = y|X = x]. (7.2)

Proof: The goal is to minimize £(g) = E 1{Y # g(X)} over all functions g taking values in
{0,...,c — 1}. Conditioning on X gives, by the tower property, £(g) = E (P[Y # g(X)| X]),
and so minimizing £(g) with respect to g can be accomplished by maximizing P[Y =

251

CLASSIFIER

INDICATOR LOSS

= 431



252

Introduction

=21

BAYES ERROR
RATE

A

g(x)| X = x] with respect to g(x), for every fixed x. In other words, take g(x) to be equal
to the class label y for which P[Y = y| X = x] is maximal. O

The formulation (7.2) allows for “ties”, when there is an equal probability between
optimal classes for a feature vector x. Assigning one of these tied classes arbitrarily (or
randomly) to x does not affect the loss function and so we assume for simplicity that g*(x)
is always a scalar value.

Note that, as was the case for the regression (see, e.g., Theorem 2.1), the optimal pre-
diction function depends on the conditional pdf f(y|x) = P[Y = y| X = x]. However, since
we assign x to class y if f(y|x) > f(z|x) for all z, we do not need to learn the entire sur-
face of the function f(y|x); we only need to estimate it well enough near the decision
boundary {x : f(y|x) = f(z|x)} for any choice of classes y and z. This is because the as-
signment (7.2) divides the feature space into ¢ regions, R, = {x : f(y|x) = max, f(z|x)},
y=0,...,c—1.

Recall that for any supervised learning problem the smallest possible expected loss
(that is, the irreducible risk) is given by £* = {(g"). For the indicator loss, the irreducible
risk is equal to P[Y # g*(X)]. This smallest possible probability of misclassification is
often called the Bayes error rate.

For a given training set 7, a classifier is often derived from a pre-classifier g., which
is a prediction function (learner) that can take any real value, rather than only values
in the set of class labels. A typical situation is the case of binary classification with
labels —1 and 1, where the prediction function g, is a function taking values in the
interval [—1, 1] and the actual classifier is given by sign(g;). It will be clear from
the context whether a prediction function g, should be interpreted as a classifier or
pre-classifier.

/

The indicator loss function may not always be the most appropriate choice of loss
function for a given classification problem. For example, when diagnosing an illness, the
mistake in misclassifying a person as being sick when in fact the person is healthy may
be less serious than classifying the person as healthy when in fact the person is sick. In
Section 7.2 we consider various classification metrics.

There are many ways to fit a classifier to a training set 7 = {(x{,y1), ..., (X,, y,)}. The
approach taken in Section 7.3 is to use a Bayesian framework for classification. Here the
conditional pdf f(y|x) is viewed as a posterior pdf f(y|x) « f(x|y)f(y) for a given class
prior f(y) and likelihood f(x|y). Section 7.4 discusses linear and quadratic discriminant
analysis for classification, which assumes that the class of approximating functions for the
conditional pdf f(x|y) is a parametric class G of Gaussian densities. As a result of this
choice of G, the marginal f(x) is approximated via a Gaussian mixture density.

In contrast, in the logistic or soft-max classification in Section 7.5, the conditional
pdf f(y|x) is approximated using a more flexible class of approximating functions. As a
result of this, the approximation to the marginal density f(x) does not belong to a simple
parametric class (such as a Gaussian mixture). As in unsupervised learning, the cross-
entropy loss is the most common choice for training the learner.

The K-nearest neighbors method, discussed in Section 7.6, is yet another approach to
classification that makes minimal assumptions on the class G. Here the aim is to directly




Classification

253

estimate the conditional pdf f(y|x) from the training data, using only feature vectors in
the neighborhood of x. In Section 7.7 we explain the support vector methodology for clas-
sification; this is based on the same Reproducing Kernel Hilbert Space ideas that proved
successful for regression analysis in Section 6.3. Finally, a versatile way to do both clas-
sification and regression is to use classification and regression trees. This is the topic of
Chapter 8. Neural networks (Chapter 9) provide yet another way to perform classification.

7.2 Classification Metrics

The effectiveness of a classifier g is, theoretically, measured in terms of the risk (7.1), which
depends on the loss function used. Fitting a classifier to iid training data 7 = {(x;, y;)}_, is
established by minimizing the training loss

1 n
£(9) =~ > Loss(yi g(x7) (7.3)
i=1

over some class of functions G. As the training loss is often a poor estimator of the risk,
the risk is usually estimated as in (7.3), using instead a test set 7/ = {(xlf,y;)}?;l} that is
independent of the training set, as explained in Section 2.3. To measure the performance
of a classifier on a training or test set, it is convenient to introduce the notion of a loss
matrix. Consider a classification problem with classifier g, loss function Loss, and classes
0,...,c — 1. If an input feature vector x is classified as y = g(x) when the observed class
is y, the loss incurred is, by definition, Loss(y,y). Consequently, we may identify the loss
function with a matrix L. = [Loss(J, k), j,k € {0, ..., c— 1}]. For the indicator loss function,
the matrix L has Os on the diagonal and 1s everywhere else. Another useful matrix is the
confusion matrix, denoted by M, where the (j, k)-th element of M counts the number of
times that, for the training or test data, the actual (observed) class is j whereas the predicted
class is k. Table 7.1 shows the confusion matrix of some Dog/Cat/Possum classifier.

Table 7.1: Confusion matrix for three classes.

Predicted
Actual Dog Cat Possum
Dog 30 2 6
Cat 8 22 15

Possum 7 4 41

We can now express the classifier performance (7.3) in terms of L and M as

1
— > [LoMly,
n T

where L © M is the elementwise product of L. and M. Note that for the indicator loss, (7.4)
is simply 1 — tr(M)/n, and is called the misclassification error. The expression (7.4) makes
it clear that both the counts and the loss are important in determining the performance of a
classifier.

(7.4)

15 222

15 287
15" 323

5 23

LOSS MATRIX

CONFUSION
MATRIX

MISCLASSIFICATION
ERROR



254

Classification Metrics

=" 459

TRUE POSITIVE

TRUE NEGATIVE

FALSE POSITIVE
FALSE NEGATIVE

ACCURACY

In the spirit of Table C.4 for hypothesis testing, it is sometimes useful to divide the
elements of a confusion matrix into four groups. The diagonal elements are the true positive
counts; that is, the numbers of correct classifications for each class. The true positive counts
for the Dog, Cat, and Possum classes in Table 7.1 are 30, 22, and 41, respectively. Similarly,
the true negative count for a class is the sum of all matrix elements that do not belong to the
row or the column of this particular class. For the Dog class itis 22+ 15+4 +41 = 82. The
false positive count for a class is the sum of the corresponding column elements without
the diagonal element. For the Dog class it is 8 + 7 = 15. Finally, the false negative count
for a specific class, can be calculated by summing over the corresponding row elements
(again, without counting the diagonal element). For the Dog class itis 2 + 6 = 8.

In terms of the elements of the confusion matrix, we have the following counts for class
j=0,...,c—1:

True positive tp; = My;,
False positive fp; = Z My, (column sum)
k#j
False negative fn; = Z M, (row sum)
k#j
True negative tn; =n—fn; —fp;, —tp;.

Note that in the binary classification case (¢ = 2), and using the indicator loss function,
the misclassification error (7.4) can be written as

fpj+fnj

error; = (7.5)

n
This does not depend on which of the two classes is considered, as fp, + fny = fp, + fn;.
Similarly, the accuracy measures the fraction of correctly classified objects:

tp; + tn;

accuracy; = 1 — error; = (7.6)

n

In some cases, classification error (or accuracy) alone is not sufficient to adequately
describe the effectiveness of a classifier. As an example, consider the following two classi-
fication problems based on a fingerprint detection system:

1. Identification of authorized personnel in a top-secret military facility.

2. Identification to get an online discount for some retail chain.

Both problems are binary classification problems. However, a false positive in the first
problem is extremely dangerous, while a false positive in the second problem will make
a customer happy. Let us examine a classifier in the top-secret facility. The corresponding
confusion matrix is given in Table 7.2.

Table 7.2: Confusion matrix for authorized personnel classification.

Predicted
Actual authorized non-authorized
authorized 100 400

non-authorized 50 100,000




Classification 255
From (7.6), we conclude that the accuracy of classification is equal to
tp + tn 100 + 100, 000
accuracy = = ~ 99.55%.
y tp+tn+fp+fn 100+ 100,000 + 50 + 400 ’
However, we can see that in this particular case, accuracy is a problematic metric, since the
algorithm allowed 50 non-authorized personnel to enter the facility. One way to deal with
this issue is to modify the loss function to give a much higher loss to non-authorized access.
Thus, instead of an (indicator) loss matrix, we could for example take the loss matrix
0 1
L= (1000 0)'
An alternative approach is to keep the indicator loss function and consider additional clas-
sification metrics. Below we give a list of commonly used metrics. For simplicity we call
an object whose actual class is j a “j-object”.
e The precision (also called positive predictive value) is the fraction of all objects PRECISION
classified as j that are actually j-objects. Specifically,
precision; = —tpj
7 tp;+1p;
e The recall (also called sensitivity) is the fraction of all j-objects that are correctly RECALL
classified as such. That is,
recall; = ————.
tpj + fnj
e The specificity measures the fraction of all non- j-objects that are correctly classified SPECIFICITY
as such. Specifically,
specificity ; = ————.
P Vi fp; + tn;
e The Fg score is a combination of the precision and the recall and is used as a single Fg SCORE

measurement for a classifier’s performance. The Fj score is given by

F (ﬁ2+1)tpj
PI g + Dtp; +p>fn; +fp;’

For 5 = 0 we obtain the precision and for § — oo we obtain the recall.

The particular choice of metric is clearly application dependent. For example, in the
classification of authorized personnel in a top-secret military facility, suppose we have
two classifiers. The first (Classifier 1) has a confusion matrix given in Table 7.2, and the
second (Classifier 2) has a confusion matrix given in Table 7.3. Various metrics for these
two classifiers are show in Table 7.4. In this case we prefer Classifier 1, which has a much
higher precision.



256

Classification Metrics

MULTILABEL
CLASSIFICATION

HIERARCHICAL
CLASSIFICATION

EXACT MATCH
RATIO

Table 7.3: Confusion matrix for authorized personnel classification, using a different clas-
sifier (Classifier 2).

Predicted
Actual Authorized Non-Authorized
authorized 50 10
non-authorized 450 100,040

Table 7.4: Comparing the metrics for the confusion matrices in Tables 7.2 and 7.3.
Metric Classifier 1  Classifier 2

accuracy  9.955x 107! 9.954 x 107!
precision 6.667 x 10°!  1.000 x 107!

recall 2.000 x 107! 8.333 x 107!
specificity 9.995 x 1071 9.955x 107!
F 3.077 x 107" 1.786 x 107!

B Remark 7.1 (Multilabel and Hierarchical Classification) In standard classification
the classes are assumed to be mutually exclusive. For example a satellite image could
be classified as “cloudy”, “clear”, or “foggy”. In multilabel classification the classes (often
called labels) do not have to be mutually exclusive. In this case the response is a subset
Y of some collection of labels {0, ..., c — 1}. Equivalently, the response can be viewed as
a binary vector of length ¢, where the y-th element is 1 if the response belongs to label y
and 0 otherwise. Again, consider the satellite image example and add two labels, such as
“road” and “river” to the previous three labels. Clearly, an image can contain both a road
and a river. In addition, the image can be clear, cloudy, or foggy.

In hierarchical classification a hierarchical relation between classes/labels is taken into
account during the classification process. Usually, the relations are modeled via a tree or a
directed acyclic graph. A visual comparison between the hierarchical and non-hierarchical
(flat) classification tasks for satellite image data is presented in Figure 7.1.

root

/ \ ‘ rural barn farm urban skyscraper
farm barn skyscraper

Figure 7.1: Hierarchical (left) and non-hierarchical (right) classification schemes. Barns
and farms are common in rural areas, while skyscrapers are generally located in cities.
While this relation can be clearly observed in the hierarchical model scheme, the connec-
tion is missing in the non-hierarchical design.

In multilabel classification, both the prediction Y= g(x) and the true response Y are
subsets of the label set {0, ..., c—1}. A reasonable metric is the so-called exact match ratio,



Classification

257

defined as _
T =Y,
exact match ratio = Lo WYi=Y }.
n

The exact match ratio is rather stringent, as it requires a full match. In order to consider
partial correctness, the following metrics could be used instead.

e The accuracy is defined as the ratio of correctly predicted labels and the total number
of predicted and actual labels. The formula is given by

L Wi Y
accuracy = ————.
i 1Y VY|
e The precision is defined as the ratio of correctly predicted labels and the total number

of predicted labels. Specifically,

SN Y

— (7.7)
e 1Yl

precision =

e The recall is defined as the ratio of correctly predicted labels and the total number of
actual labels. Specifically,

> YN Y|

7.8
Y (7.5)

recall =

e The Hamming loss counts the average number of incorrect predictions for all classes,
calculated as

n c-1

1 — —
Hamming = - Z Z IfyeVYilyeVi+1{y¢e Y} 1{ye Y}

i=1 y=0

7.3 Classification via Bayes’ Rule

We saw from Theorem 7.1 that the optimal classifier for classes O,...,c — 1 divides the
feature space into ¢ regions, depending on f(y|x): the conditional pdf of the response Y
given the feature vector X = x. In particular, if f(y|x) > f(z|x) for all z # y, the feature
vector x is classified as y. Classifying feature vectors on the basis of their conditional class
probabilities is a natural thing to do, especially in a Bayesian learning context; see Sec-
tion 2.9 for an overview of Bayesian terminology and usage. Specifically, the conditional
probability f(y|x) is interpreted as a posterior probability, of the form

FOlx) e flx|y)f(), (7.9)

where f(x|y) is the likelihood of obtaining feature vector x from class y and f(y) is the
prior probability! of class y. By making various modeling assumptions about the prior

"Here we have used the Bayesian notation convention of “overloading” the notation f.

48



258

Classification via Bayes’ Rule

BAYES oPTIMAL
DECISION RULE

NAIVE BAYES

(e.g., all classes are a priori equally likely) and the likelihood function, one obtains the
posterior pdf via Bayes’ formula (7.9). A class y is then assigned to a feature vector x
according to the highest posterior probability; that is, we classify according to the Bayes
optimal decision rule:

y = argmax f(y|x), (7.10)
y

which is exactly (7.2). Since the discrete density f(y|x), y = 0,...,c — 1 is usually not
known, the aim is to approximate it well with a function g(y|x) from some class of func-
tions G. Note that in this context, g(-|x) refers to a discrete density (a probability mass
function) for a given x.

Suppose a feature vector x = [xy,...,x,]" of p features has to be classified into one of
the classes O, ..., c — 1. For example, the classes could be different people and the features
could be various facial measurements, such as the width of the eyes divided by the distance
between the eyes, or the ratio of the nose height and mouth width. In the naive Bayes
method, the class of approximating functions G is chosen such that g(x|y) = g(x;]y)---
g(x,|y), that is, conditional on the label, all features are independent. Assuming a uniform
prior for y, the posterior pdf can thus be written as

p
g0 1) o [ | ex; 1),
j=1

where the marginal pdfs g(x;|y),j=1,...,p belong to a given class of approximating
functions G. To classify x, simply take the y that maximizes the unnormalized posterior
pdf.

For instance, suppose that the approximating class G is such that (X;|y) ~ N(u,;, o),
y=0,...,c—=1,j=1,..., p. The corresponding posterior pdf is then

2 2
; 1llx =l
w] _ exp(__¢),

8(y16,x) o eXP(—§ = T o2

=1
where p, := [wy1, ..., 1,17 and 6 := {pg, ..., p,y, o2} collects all model parameters. The
probability g(y| @, x) is maximal when ||x — gl is minimal. Thusy = argmin, ||x — g || is
the classifier that maximizes the posterior probability. That is, classify x as y when p, is
closest to x in Euclidean distance. Of course, the parameters (here, the {,uy} and o?) are
unknown and have to be estimated from the training data.

We can extend the above idea to the case where also the variance o depends on the
class y and feature j, as in the next example.

B Example 7.1 (Naive Bayes Classification) Table 7.5 lists the means ¢ and standard de-
viations o of p = 3 normally distributed features, for ¢ = 4 different classes. How should
a feature vector x = [1.67,2.00,4.23]" be classified? The posterior pdf is

3
g(y10,x) « (0'y10'y20'y3)‘1 exp[ Z (x) — :“)J) ]
j=1

where 0 := {0, ﬂJ}J ~o again collects all model parameters The (unscaled) values for

2(v16,x),y=0,1,2,3 are 53.5,0.24, 8.37, and 3.5 x 107°, respectively. Hence, the feature
vector should be classified as 0. The code follows.



Classification

259

Table 7.5: Feature parameters.

Feature 1 Feature 2 Feature 3
Class u o u o u o
0 1.6 0.1 24 0.5 43 0.2

1.5 02 29 0.6 6.1 09
1.8 03 25 03 42 03
1.1 0.2 3.1 0.7 5.6 03

W o =

naiveBayes.py

import numpy as np
X = np.array([1.67,2,4.23]) .reshape(1,3)

mu = np.array([1.6, 2.4, 4.3,

1.5, 2.9, 6.1,

1.8, 2.5, 4.2,

1.1, 3.1, 5.6]).reshape(4,3)
sig = np.array([0.1, 0.5, 0.2,

0.2, 0.6, 0.9,

0.3, 0.3, 0.3,

0.2, 0.7, 0.3]).reshape(4,3)

g = lambda y: 1/np.prod(sigl[y,:]1) * np.exp(
-0.5*np.sum((x-muly,:])**2/sigly,:1%%2));
for y in range(0,4):
print('{:3.2e}"'.format(g(y)))

5.35e+01
2.42e-01
8.37e+00
3.53e-06

7.4 Linear and Quadratic Discriminant Analysis

The Bayesian viewpoint for classification of the previous section (not limited to naive
Bayes) leads in a natural way to the well-established technique of discriminant analysis.
We discuss the binary classification case first, with classes 0 and 1.

We consider a class of approximating functions G such that, conditional on the class
y € {0, 1}, the feature vector X = [X,...,X,]" hasa N(uy, X.,) distribution (see (2.33)):

g(x16,y) = e 2 )T )y e RP y e {0, 1), (7.11)

1
V@2mP x|

where 6 = {a;,p;, X j};(l) collects all model parameters, including the probability vector @
(thatis, >; @; = 1 and a; > 0) which helps define the prior density: g(y|60) = «,, y € {0, 1}.

Then, the posterior density is

g(10,x) < a, X g(x10,y),

DISCRIMINANT
ANALY SIS

= 46


https://github.com/DSML-book/Programs/blob/master/Chapter7/naiveBayes.py

260 Linear and Quadratic Discriminant Analysis
and, according to the Bayes optimal decision rule (7.10), we classify x to come from class
0if apg(x|0,0) > a1g(x |0, 1) or, equivalently (by taking logarithms) if,

1 1 _ 1 1 _
Inay - 3 In [Xo| - E(x — 1) E5 (x — o) > Inay — 3 In|X;| - E(x — 1) E - py).
The function
1 1 _
6y(x) = Inay = 2 In|By| = 2(x - ) T (x—py), xeR? (7.12)

QUADRATIC is called the quadratic discriminant function for class y = 0, 1. A point x is classified to

AT class y for which 6,(x) is largest. The function is quadratic in x and so the decision bound-
ary {x € R” : 6p(x) = 6;(x)} 1s quadratic as well. An important simplification arises for the
case where the assumption is made that £, = X£; = X. Now, the decision boundary is the
set of x for which

1 _ 1 _
Inap - 5(x — 1) TN x —pp) =Ina; - S - u) N x - py).
Expanding the above expression shows that the quadratic term in x is eliminated, giving a
linear decision boundary in x:
1 1
Inag — Eygz_lpo +x" 27y =1na; - Eﬂf):._]ul +x 27y,

LINEAR The corresponding linear discriminant function for class y is

DISCRIMINANT

FUNCTION 1 Ty —1 Ty—-1 p

5y(x):lna/y—§uy2 Hy+x X p, xeRM (7.13)
B Example 7.2 (Linear Discriminant Analysis) Consider the case where ay = a; = 1/2
and
> 2 07 10 12
“lo7 2|0 HoTlo| HiT 4|
= 135 The distribution of X is a mixture of two bivariate normal distributions. Its pdf,

1 1
Eg(xIO,y =0)+ Eg(xIH,y =1),

is depicted in Figure 7.2.

Figure 7.2: A Gaussian mixture density where the two mixture components have the same
covariance matrix.



Classification

261

We used the following Python code to make this figure.

LDAmixture.py

import numpy as np, matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
from mpl_toolkits.mplot3d import Axes3D

from matplotlib.colors import LightSource

mu®, mul = np.array([0,0]), np.array([2,4])
Sigma = np.array([[2,0.7],[0.7, 2]11)

X, ¥y = np.mgrid[-4:6:150j,-5:8:1507]
mvn® = multivariate_normal( mu®, Sigma )
mvnl = multivariate_normal( mul, Sigma )

xy = np.hstack((x.reshape(-1,1),y.reshape(-1,1)))
z = 0.5*mvn0®.pdf(xy).reshape(x.shape) + 0.5*mvnl.pdf(xy).reshape(x.
shape)

fig = plt.figure()

ax = fig.gca(projection='3d")

ls = LightSource(azdeg=180, altdeg=65)

cols = 1ls.shade(z, plt.cm.winter)

surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, linewidth=0,
antialiased=False, facecolors=cols)

plt.show ()

The following Python code, which imports the previous code, draws a contour plot of
the mixture density, simulates 1000 data points from the mixture density, and draws the
decision boundary. To compute and display the linear decision boundary, let [a;,a,]"T =
2%y — pp) and b = pJ X'y — p X ;. Then, the decision boundary can be written
as ajx; + a,x, + b = 0 or, equivalently, x, = —(a;x, + b)/a,. We see in Figure 7.3 that the
decision boundary nicely separates the two modes of the mixture density.

from LDAmixture import *
from numpy.random import rand
from numpy.linalg import inv

fig = plt.figure()
plt.contourf(x, y,z, cmap=plt.cm.Blues, alpha= 0.9,extend="both")
plt.ylim(-5.0,8.0)
plt.x1lim(-4.0,6.0)
M = 1000
r = (rand(M,1) < 0.5)
for i in range(®,M):
if r[i]:
u = np.random.multivariate_normal (mu®,Sigma,l)
plt.plot(u[®][0],u[®][1], '.r',alpha = 0.4)
else:
u = np.random.multivariate_normal (mul,Sigma,l)
plt.plotCu[®][0],ul0][1], '+k',alpha = 0.6)



https://github.com/DSML-book/Programs/blob/master/Chapter7/LDAmixture.py
https://github.com/DSML-book/Programs/blob/master/Chapter7/LDA.py

262

Linear and Quadratic Discriminant Analysis

a = 2*inv(Sigma) @ (mul-mu0®);

b = ( mu®.reshape(l,2) @ inv(Sigma) @ mu®.reshape(2,1)
- mul.reshape(l,2) @ inv(Sigma) G@mul.reshape(2,1) )

XX = np.linspace(-4,6,100)

yy = (-(a[0]*xx +b)/a[1]) [0]

plt.plot(xx,yy, 'm")

plt.show ()

Figure 7.3: The linear discriminant boundary lies between the two modes of the mixture
density and is linear.
u

To illustrate the difference between the linear and quadratic case, we specify different
covariance matrices for the mixture components in the next example.

B Example 7.3 (Quadratic Discriminant Analysis) As in Example 7.2 we consider a
mixture of two Gaussians, but now with different covariance matrices. Figure 7.4 shows
the quadratic decision boundary. The Python code follows.

5

4

Figure 7.4: A quadratic decision boundary.



Classification

263

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal

mul = np.array([0,0])

mu2 = np.array([2,2])

Sigmal = np.array([[1,0.3],[0.3, 111)
Sigma2 = np.array([[0.3,0.3],[0.3, 111)
X, ¥y = np.mgrid[-2:4:1503,-3:5:1507]

mvnl multivariate_normal ( mul, Sigmal )
mvn2 multivariate_normal ( mu2, Sigma2 )

xy = np.hstack((x.reshape(-1,1),y.reshape(-1,1)))
z = ( 0.5*mvnl.pdf(xy).reshape(x.shape) +

0.5*mvn2.pdf(xy) .reshape(x.shape) )
plt.contour(x,y,z)

z1 = ( 0.5*mvnl.pdf(xy).reshape(x.shape) -
0.5*mvn2.pdf(xy).reshape(x.shape))
plt.contour(x,y,zl, levels=[0],linestyles ='dashed',
linewidths = 2, colors = 'm'")
plt.show ()

Of course, in practice the true parameter 6 = {a;, X;, u i 32:1 1s not known and must be
estimated from the training data — for example, by minimizing the cross-entropy training
loss (4.4) with respect to 6:

1 « 1«
- L is Vi)s i’ia = - 1 i’iea
nzl 0ss(f(Xi, y:), 8, yi160)) nZI ng(xi,y10)

where

1 1
Ing(x,y|0) =lna, - 3 In|X,| - 3 (x — /,ty)TZ;](x -K) - %1n(27r).

The corresponding estimates of the model parameters (see Exercise 2) are:

. ny
ay = —

n
- 1
=0 iyZ:yxi (7.14)
—~ 1 - S
5= i.yZ:y(x" ~ [ — 1)

fory=0,...,c—1, where n, := }}"_, I{y; = y}. For the case where X, = X for all y, we
have X = 2y Oy fy.

When ¢ > 2 classes are involved, the classification procedure carries through in exactly
the same way, leading to quadratic and linear discriminant functions (7.12) and (7.13) for
each class. The space R” now is partitioned into ¢ regions, determined by the linear or
quadratic boundaries determined by each pair of Gaussians.

5 123


https://github.com/DSML-book/Programs/blob/master/Chapter7/QDA.py

264

Linear and Quadratic Discriminant Analysis

SPHERE THE DATA

5 373

I 433

For the linear discriminant case (that is, when X, = X for all ), it is convenient to first
“whiten” or sphere the data as follows. Let B be an invertible matrix such that ¥ = BBT,
obtained, for example, via the Cholesky method. We linearly transform each data point x

to x’ := B~'x and each mean H, to u; = B‘l/.ty, y=0,...,c— 1. Let the random vector X
be distributed according to the mixture pdf
gx(x16) := Z 3 ) TE )

\/(27r)” Iy

Then, by the transformation Theorem C.4, the vector X’ = B™' X has density

gx(x16)
IB~| Z \/(271)1’

c—1

~1 () TBBT) ()

gx(x']0) =

5 I =g |?

) e )T ) Z
(27r)P V(Zﬂ)l’

y=0 y=0

This is the pdf of a mixture of standard p-dimensional normal distributions. The name
“sphering” derives from the fact that the contours of each mixture component are perfect
spheres. Classification of the transformed data is now particularly easy: classify x as’y :=
argmm {llx yyll2 2In a,}. Note that this rule only depends on the prior probabilities and
the dlstance from x” to the transformed means {u}. This procedure can lead to a significant
dimensionality reduction of the data. Namely, the data can be projected onto the space
spanned by the differences between the mean vectors {u]}. When there are ¢ classes, this
is a (c — 1)-dimensional space, as opposed to the p-dimensional space of the original data.
We explain the precise ideas via an example.

B Example 7.4 (Classification after Data Reduction) Consider an equal mixture of
three 3-dimensional Gaussian distributions with identical covariance matrices. After spher-
ing the data, the covariance matrices are all equal to the identity matrix. Suppose the mean
vectors of the sphered data are u, = [2,1,-3]", p, = [1,-4,0]", and pu; = [2,4,6] . The
left panel of Figure 7.5 shows the 3-dimensional (sphered) data from each of the three
classes.

Figure 7.5: Left: original data. Right: projected data.

The data are stored in three 1000 x 3 matrices X;, X,, and X3. Here is how the data was
generated and plotted.



Classification

265

datared.py

import numpy as np

from numpy.random import randn

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

n=1000

mul = np.array([2,1,-3])
mu?2 np.array([1,-4,0])
mu3 = np.array([2,4,0])

X1 = randn(n,3) + mul
X2 = randn(n,3) + mu2
X3 = randn(n,3) + mu3

fig = plt.figure()

ax = fig.gca(projection='3d"',)
ax.plot(X1[:,0],X1[:,1],X1[:,2],'r."',alpha=0.5,markersize=2)
ax.plot(X2[:,0],X2[:,1],X2[:,2],"'b."',alpha=0.5,markersize=2)
ax.plot(X3[:,0],X3[:,1],X3[:,2],"'g."',alpha=0.5,markersize=2)
ax.set_x1im3d(-4,6)

ax.set_ylim3d(-5,5)

ax.set_zlim3d(-5,2)

plt.show ()

Since we have equal mixtures, we classify each data point x according to the closest
distance to y,, ft,, or u;. We can achieve a reduction in the dimensionality of the data by
projecting the data onto the two-dimensional affine space spanned by the {g;,}; that is, all
vectors are of the form

W+ By — ) + Bolpy — ), Bi.Br €R.

In fact, one may just as well project the data onto the subspace spanned by the vectors
Moy =y —py and py = py — py. Let W = [pu,, g5, ] be the 3 X 2 matrix whose columns
are p,, and p5,. The orthogonal projection matrix onto the subspace ‘W spanned by the
columns of W is (see Theorem A.4):

P=WW'=WW' W)'W"
Let UDVT be the singular value decomposition of W. Then P can also be written as
P=UDD'D)'D'U".

Note that D has dimension 3 X 2, so is not square. The first two columns of U, say u;
and u,, form an orthonormal basis of the subspace ‘W. What we want to do is rotate this
subspace to the x—y plane, mapping u; and u, to [1,0,0]" and [0, 1,0] ", respectively. This
is achieved via the rotation matrix U™' = U7, giving the skewed projection matrix

R=UP=DD'D)'D'U,

whose 3rd row only contains zeros. Applying R to all the data points, and ignoring the
3rd component of the projected points (which is 0), gives the right panel of Figure 7.5.
We see that the projected points are much better separated than the original ones. We have
achieved dimensionality reduction of the data while retaining all the necessary information
required for classification. Here is the rest of the Python code.

1= 362


https://github.com/DSML-book/Programs/blob/master/Chapter7/datared.py

266 Logistic Regression and Softmax Classification
dataproj.py

from datared import *

from numpy.linalg import svd, pinv

mu2l = (mu2 - mul).reshape(3,1)

mu3l = (mu3 - mul).reshape(3,1)

W = np.hstack((mu21, mu3l))

U,_,_ = svd(W) # we only need U

P =W @ pinv(W)

R=U.T @P

RX1 = (R @ X1.T).T

RX2 = (R @ X2.T).T

RX3 = (R @ X3.T).T

plt.plot(RX1[:,0],RX1[:,1],'b.",alpha=0.5,markersize=2)

plt.plot(RX2[:,0],RX2[:,1],"'g."',alpha=0.5,markersize=2)

plt.plot(RX3[:,0],RX3[:,1],'r.",alpha=0.5,markersize=2)

plt.show ()

[

7.5 Logistic Regression and Softmax Classification
= 205 In Example 5.10 we introduced the logistic (logit) regression model as a generalized linear

model where, conditional on a p-dimensonal feature vector x, the random response Y has

a Ber(h(x"B)) distribution with a(u) = 1/(1 +¢e™"). The parameter B was then learned from

the training data by maximizing the likelihood of the training responses or, equivalently,
= 123 by minimizing the supervised version of the cross-entropy training loss (4.4):

LOG-0ODDS RATIO

MULTI-LOGIT

1 n
- 1 i s A7)y
n;ng@lﬁx)

where g(y = 118,x) = 1/(1 +e*'#) and g(y = 0|B,x) = e~ #/(1 + e*'P). In particular,

we have
ng(y =1]B,x) _
gy =0[B,x)

In other words, the log-odds ratio is a linear function of the feature vector. As a con-
sequence, the decision boundary {x : g(y =0|B,x) = g(y = 1|B,x)} is the hyperplane
x'B = 0. Note that x typically includes the constant feature. If the constant feature is con-
sidered separately, that is x = [1,X"]7, then the boundary is an affine hyperplane in x.
Suppose that training on 7 = {(x;,y;)} yields the estimate 8 with the corresponding

learner g.(y = 1[x)=1/(1 + e *'P). The learner can be used as a pre-classifier from which
we obtain the classifier 1{g.(y = 1|x) > 1/2} or, equivalently,

xB. (7.15)

¥ = argmax g.(y = j|x),
J€0,1}
in accordance with the fundamental classification rule (7.2).
The above classification methodology for the logit model can be generalized to the
multi-logit model where the response takes values in the set {0, ..., c — 1}. The key idea is


https://github.com/DSML-book/Programs/blob/master/Chapter7/dataproj.py

Classification 267

to replace (7.15) with
80 =JjIW,b,x) _
gy =0|W,b,x)

where the matrix W € R“""?~D and vector b € R°"' reparameterize all 8, € R” such that
(recall x = [1,x"]"):

In

XB, j=l...,c-1, (7.16)

WE"' b = [ﬁl’ . e ,ﬂc_l]Tx.
Observe that the random response Y is assumed to have a conditional probability distri-
bution for which the log-odds ratio with respect to class j and a “reference” class (in this
case 0) is linear. The separating boundaries between two pairs of classes are again affine
hyperplanes.
The model (7.16) completely specifies the distribution of Y, namely:
exp(zy+1)

Diee1 €Xp(zx)

where z; is an arbitrary constant, say 0, corresponding to the “reference” class y = 0, and

[z2,...,2.]" :=Wx+b.

8 IW,b,x) = y=0,....,c—1,

Note that g(y | W, b, x) is the (y + 1)-st component of a = softmax(z), where

exp(z
softmax : z — L
22k €Xp(21)
is the softmax function and z = [z1,...,2.]". Finally, we can write the classifier as SOFTMAX

Y = argmax dj,i.
El0,nc—1}

In summary, we have the sequence of mappings transforming the input x into the output y:

x - WX + b — softmax(z) — argmax aj,; — .
J€{0,c—1)
In Example 9.4 we will revisit the multi-logit model and reinterpret this sequence of map- 1= 334
pings as a neural network. In the context of neural networks, W is called a weight matrix
and b is called a bias vector.
The parameters W and b have to be learned from the training data, which involves
minimization of the supervised version of the cross-entropy training loss (4.4): = 123

1 v 1 ¢
= > Loss(f(i| ), 801 | W, b, %)) = == > Ing(i | W, b, x).
= g

Using the softmax function, the cross-entropy loss can be simplified to:

Cc

Loss(f(y1x),g(y|W,b,x)) = —zy.1 +1n Z exp(zz)- (7.17)
k=1
The discussion on training is postponed until Chapter 9, where we reinterpret the multi-
logit model as a neural net, which can be trained using the limited-memory BFGS method
(Exercise 11). Note that in the binary case (¢ = 2), where there is only one vector S to =" 353
be estimated, Example 5.10 already established that minimization of the cross-entropy
training loss is equivalent to likelihood maximization.



268

K-Nearest Neighbors Classification

K -NEAREST
NEIGHBORS

= 142

7.6 K-Nearest Neighbors Classification

Let 7 = {(x;, y)}?, be the training set, with y; € {0,...,c — 1}, and let x be a new feature
vector. Define x(;), X(2), . . . , X, as the feature vectors ordered by closeness to x in some dis-
tance dist(x, x;), e.g., the Euclidean distance ||x —x’||. Let 7(x) := {(xq1), Y1) - - - » (X(x)> &)}
be the subset of 7 that contains K feature vectors x; that are closest to x. Then the K-nearest
neighbors classification rule classifies x according to the most frequently occurring class
labels in 7(x). If two or more labels receive the same number of votes, the feature vector
is classified by selecting one of these labels randomly with equal probability. For the case
K =1 the set 7(x) contains only one element, say (x’,y"), and x is classified as y’. This

divides the space into n regions
Ri = {x : dist(x, x;) < dist(x,x;), j#1i}, i=1,...,n

For a feature space R” with the Euclidean distance, this gives a Voronoi tessellation of the
feature space, similar to what was done for vector quantization in Section 4.6.

B Example 7.5 (Nearest Neighbor Classification) The Python program below simulates
80 random points above and below the line x, = x;. Points above the line x, = x; have
label 0 and points below this line have label 1. Figure 7.6 shows the Voronoi tessellation
obtained from the 1-nearest neighbor classification.

Figure 7.6: The 1-nearest neighbor algorithm divides up the space into Voronoi cells.

nearestnb.py

import numpy as np

from numpy.random import rand,randn

import matplotlib.pyplot as plt

from scipy.spatial import Voronoi, voronoi_plot_2d


https://github.com/DSML-book/Programs/blob/master/Chapter7/nearestnb.py

Classification

269

np.random.seed (12345)

M = 80
X = randn(M,2)
y = np.zeros(M) # pre-allocate list

for i in range(M):
if rand()<0.5:
x[i,1], y[il
else:
x[i,1], y[i] = x[i,0] - np.abs(randn()), 1

x[i,0] + np.abs(randn()), 0

vor = Voronoi (x)

plt_options = {'show_vertices':False, 'show_points':False,
'line_alpha':0.5}
fig = voronoi_plot_2d(vor, **plt_options)

plt.plot(x[y==0,0], x[y==0,1], 'bo",

x[y==1,01, x[y==1,1],'rs', markersize=3)

7.7 Support Vector Machine

Suppose we are given the training set 7 = {(x;, y;)}!_,, where each response? y; takes either
the value —1 or 1, and we wish to construct a classifier taking values in {—1, 1}. As this
merely involves a relabeling of the 0—1 classification problem in Section 7.1, the optimal
classification function for the indicator loss, 1{y # 7y}, is, by Theorem 7.1, equal to

. 1 if PlY=1X=x]>1/2,
g (x) = .
-1 if PlY=1X=x]<1/2.
It is not difficult to show, see Exercise 5, that the function g* can be viewed as the minimizer

of the risk for the hinge loss function, Loss(y,y) = (1 — yy), := max{0, 1 — yy}, over all
prediction functions g (not necessarily taking values only in the set {—1, 1}). That is,

g =argminE (1 - Y g(X)),. (7.18)
g

Given the training set 7, we can approximate the risk £(g) = E (1 — Y g(X)), with the train-
ing loss

1 n
t(g) =~ Zl (1 = yi 8(x))s,

and minimize this over a (smaller) class of functions to obtain the optimal prediction func-
tion g.. Finally, as the prediction function g, generally is not a classifier by itself (it usually
does not only take values —1 or 1), we take the classifier

sign g.(x).

2The reason why we use responses —1 and 1 here, instead of 0 and 1, is that the notation becomes easier.

HINGE LOSS



270

Support Vector Machine

OPTIMAL DECISION
BOUNDARY

= 231

5 232

Therefore, a feature vector x is classified according to 1 or —1 depending on whether
g:(x) > 0 or < 0, respectively. The optimal decision boundary is given by the set of x for
which g.(x) = 0.

Similar to the cubic smoothing spline or RKHS setting in (6.19), we can consider find-
ing the best classifier, given the training data, via the penalized goodness-of-fit optimiza-
tion:

1 n
in — 1 - yig(x)ls + 7 1iglls
o ;[ yi g(x)l+ + 7 lgll
for some regularization parameter y. It will be convenient to define y := 2ny and to solve
the equivalent problem

. - Yo
E 1=y g(x)]s + = Mgl
ge%g?l{o P [ Y g(x )]+ 2 ”g”H

We know from the Representer Theorem 6.6 that if « is the reproducing kernel cor-
responding to HH, then the solution is of the form (assuming that the null space H, has a
constant term only):

g(x) = @y + ) aik(x;, X). (7.19)

i=1

Substituting into the minimization expression yields the analogue of (6.21):

n

min 3 [1 = yi(ao + {Ke})l, + Y a"Ka, (7.20)
0o 2
where K is the Gram matrix. This is a convex optimization problem, as it is the sum of a
convex quadratic and piecewise linear term in @. Defining 4; := ya;/y;, i = 1,...,n and
A = [4,...,4,]7, we show in Exercise 10 that the optimal @ and «a in (7.20) can be
obtained by solving the “dual” convex optimization problem
n 1 n n
max Ai— == Aid;yiy; k(Xi, X )
z Z‘ 27;; o ! (7.21)

subjectto: ATy =0, 0<A<1,

and ap = y; — Xi=1 @; k(x;, x;) for any j for which 4; € (0, 1). In view of (7.19), the optimal
prediction function (pre-classifier) g, is then given by

n 1 n
g(X)=ap+ ) aik(x;,x)=ay+— ) yidik(x;, x). (7.22)
> Y2

i=1

To mitigate possible numerical problems in the calculation of a it is customary to take

an overall average:
1 n
Qg = — yi— a; K(X;, Xj) ¢,
T Z{ ! Zl ! }

Jeg
where J :={j: 4; € (0, 1)}.



Classification

271

Note that, from (7.22), the optimal pre-classifier g(x) and the classifier sign g(x) only
depend on vectors x; for which A; # 0. These vectors are called the support vectors of the
support vector machine. It is also important to note that the quadratic function in (7.21)
depends on the regularization parameter y. By defining v; := A;/y,i = 1,...,n, we can
rewrite (7.21) as

n

. 1
myln 5 Z Viviyiy; K(Xi, X ;) — Z Vi
b = (7.23)

subjectto: > viyi=0, 0<w<l/y=:C, i=1,...,n
i=1

For perfectly separable data, that is, data for which an affine plane can be drawn to perfectly
separate the two classes, we may take C = oo, as explained below. Otherwise, C needs to
be chosen via cross-validation or a test data set, for example.

Geometric interpretation

For the linear kernel function «(x, x") = x"x’, we have

g:(x) = o+ B x,

with 8y = agand B = y~! S Ayixi = YL, ax;, and so the decision boundary is an affine
plane. The situation is illustrated in Figure 7.7. The decision boundary is formed by the
points x such that g.(x) = 0. The two sets {x : g.(x) = —1} and {x : g.(x) = 1} are called
the margins. The distance from the points on a margin to the decision boundary is 1/||8]|.

Figure 7.7: Classifying two classes (red and blue) using SVM.

Based on the “multipliers” {4;}, we can divide the training samples {(x;, y;)} into three
categories (see Exercise 11):

e Points for which 4; € (0,1). These are the support vectors on the margins (green
encircled in the figure) and are correctly classified.

SUPPORT VECTORS



272

Support Vector Machine

e Points for which A; = 1. These points, which are also support vectors, lie strictly
inside the margins (points 1, 2, and 3 in the figure). Such points may or may not be
correctly classified.

e Points for which A; = 0. These are the non-support vectors, which all lie outside the
margins. Every such point is correctly classified.

If the classes of points {x; : y; = 1} and {x; : y; = —1} are perfectly separable by some
affine plane, then there will be no points strictly inside the margins, so all support vectors
will lie exactly on the margins. In this case (7.20) reduces to

min |8
Bho (7.24)
subjectto:  yi(Bo+x/B) = 1,i=1,...,n,

using the fact that ¢y = Sy and Ka = XX @ = XB. We may replace min ||8||* in (7.24) with
max 1/||B]|, as this gives the same optimal solution. As 1/||8]| is equal to half the margin
width, the latter optimization problem has a simple interpretation: separate the points via
an affine hyperplane such that the margin width is maximized.

B Example 7.6 (Support Vector Machine) The data in Figure 7.8 was uniformly gener-
ated on the unit disc. Class-1 points (blue dots) have a radius less than 1/2 (y-values 1) and
class-2 points (red crosses) have a radius greater than 1/2 (y-values —1).

0.8
0.6
04
0.2

0.2+
0.4+
0.6+
0.8+

Figure 7.8: Separate the two classes.

Of course it is not possible to separate the two groups of points via a straight line in
R2. However, it is possible to separate them in R? by considering three-dimensional feature
vectors z = [z1,22,23]" = [x1, X2, x% + xg]T. For any x € R?, the corresponding feature vec-
tor z lies on a quadratic surface. In this space it is possible to separate the {z;} points into
two groups by means of a planar surface, as illustrated in Figure 7.9.



Classification

273

Figure 7.9: In feature space R? the points can be separated by a plane.

We wish to find a separating plane in R? using the transformed features. The following
Python code uses the SVC function of the sklearn module to solve the quadratic optimiz-
ation problem (7.23) (with C = o0). The results are summarized in Table 7.6. The data is
available from the book’s GitHub site as svmcirc.csv.

svmquad. py

import numpy as np
from numpy import genfromtxt
from sklearn.svm import SVC

data = genfromtxt('svmcirc.csv', delimiter="',")
X = datal[:,[0,1]] #vectors are rows
y = datal[:,[2]].reshape(len(x),) #labels

tmp = np.sum(np.power(x,2),axis=1).reshape(len(x),1)
z = np.hstack ((x,tmp))

clf = SVC(C = np.inf, kernel='linear')
clf.fit(z,y)

print ("Support Vectors \n", clf.support_vectors_)
print ("Support Vector Labels ",y[clf.support_])
print ("Nu",clf.dual_coef_)
print("Bias",clf.intercept_)

Support Vectors

[[ 0.038758 0.53796 0.29090314]
[-0.49116 -0.20563 0.28352184]
[-0.45068 -0.04797 0.20541358]
[-0.061107 -0.41651 0.17721465]]

Support Vector Labels [-1. -1. 1. 1.]
Nu [[ -46.49249413 -249.01807328 265.31805855 30.19250886]1]

Bias [5.617891]



https://github.com/DSML-book/Programs/blob/master/Chapter7/svmcirc.csv
https://github.com/DSML-book/Programs/blob/master/Chapter7/svmquad.py

274

Support Vector Machine

Table 7.6: Optimal support vector machine parameters for the R* data.
z' y a=vy
0.0388 0.5380 0.2909 -1 —-46.4925
—-0.4912 -0.2056 0.2835 -1 -249.0181
-0.4507 -0.0480 0.2054 1 265.3181
-0.0611 -0.4165 0.1772 1 30.1925

It follows that the normal vector of the plane is

B = Z a;z; = [-0.9128,0.8917,-24.2764]",
ieS

where S is the set of indices of the support vectors. We see that the plane is almost per-
pendicular to the z;, z> plane. The bias term 5 can also be found from the table above. In
particular, for any x™ and y in Table 7.6, we have y — 87z = By = 5.6179.

To draw the separating boundary in R? we need to project the intersection of the sep-
arating plane with the quadratic surface onto the z;, z, plane. That is, we need to find all
points (z;, z2) such that

5.6179 — 0.9128z + 0.8917z, = 24.2764 (2 + 22). (7.25)

This is the equation of a circle with (approximate) center (0.019, —0.018) and radius 0.48,
which is very close to the true circular boundary between the two groups, with center (0, 0)
and radius 0.5. This circle is drawn in Figure 7.10.

17 x
% x
x
x x
®X
x
x
x %
x
<X x
0,
x
x
)
x X
x
x
x x
x * x x
x
x

1 x % ”

Figure 7.10: The circular<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>